Skip to main content
Kent Academic Repository

The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: a stabiliser for the synthesis and dispersion of magnetite nanoparticles

Kleine, Aaron, Altan, Cem L., Yarar, U. Ecem, Sommerdijk, Nico A. J. M., Bucak, Seyda, Holder, Simon J. (2014) The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: a stabiliser for the synthesis and dispersion of magnetite nanoparticles. Polymer Chemistry, 5 (2). pp. 524-534. ISSN 1759-9954. (doi:10.1039/C3PY01094E) (KAR id:36921)

Abstract

A facile synthetic route to poly(ethylene imine)-graft-poly(oligo(ethylene glycol methyl ether)) (PEI-graft-POEGMA) functionalised superparamagnetic magnetite nanoparticles is described. The polymerisation of OEGMA from a model molecular amide demonstrated the feasibility of POEGMA synthesis under mild ATRP conditions (20 °C in ethanol) albeit with low initiator efficiencies. DFT studies suggest that the amide functionality is intrinsically of lower activity than ester functional monomers and initiators for atom transfer polymerisation (ATRP) as a consequence of higher bond dissociation energies and bond dissociation free energies (BDFE). However these studies further highlighted that use of an appropriate solvent could reduce the free energy of dissociation thereby reducing the relative difference in BDFE between the ester and amide groups. A commercial branched PEI sample was functionalised by reaction with 2-bromo-2-methylpropanoyl bromide giving an amide macroinitiator suitable for the atom transfer radical polymerisation (ATRP) of oligo(ethylene glycol methyl ether) methacrylate. The resulting PEI-graft-POEGMA copolymers were characterised by SEC, FT-IR and 1H and 13C NMR spectroscopy. PEI-graft-POEGMA coated magnetite nanoparticles were synthesised by a basic aqueous co-precipitation method and were characterised by transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometry and dynamic light scattering. These copolymer coated magnetite nanoparticles were demonstrated to be effectively stabilised in an aqueous medium. Overall the particle sizes and magnetic and physical properties of the coated samples were similar to those of uncoated samples.

Item Type: Article
DOI/Identification number: 10.1039/C3PY01094E
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Simon Holder
Date Deposited: 25 Nov 2013 22:52 UTC
Last Modified: 16 Feb 2021 12:49 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/36921 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.