Wood, Ian (2007) Maximal L^p -regularity for the Laplacian on Lipschitz domains. Mathematische Zeitschrift, 255 (4). pp. 855-875. ISSN 0025-5874. (doi:10.1007/s00209-006-0055-6) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:31253)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: http://dx.doi.org/10.1007/s00209-006-0055-6 |
Abstract
We consider the Laplacian with Dirichlet or Neumann boundary
conditions on bounded Lipschitz domains ?, both with the following two domains of
definition:D1(?) = {u ? W1,p(?) : ?u ? Lp(?), Bu = 0}, orD2(?) = {u ? W2,p(?) :
Bu = 0}, where B is the boundary operator.We prove that, under certain restrictions
on the range of p, these operators generate positive analytic contraction semigroups
on Lp(?) which implies maximal regularity for the corresponding Cauchy problems.
In particular, if ? is bounded and convex and 1 < p ? 2, the Laplacian with domain
D2(?) has the maximal regularity property, as in the case of smooth domains. In the
last part,we construct an example that proves that, in general, the Dirichlet–Laplacian
with domain D1(?) is not even a closed operator.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1007/s00209-006-0055-6 |
Subjects: |
Q Science > QA Mathematics (inc Computing science) > QA299 Analysis, Calculus Q Science > QA Mathematics (inc Computing science) > QA377 Partial differential equations |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science |
Depositing User: | Ian Wood |
Date Deposited: | 04 Oct 2012 10:32 UTC |
Last Modified: | 05 Nov 2024 10:13 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/31253 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):