Stapleton, Gem, Zhang, Leishi, Howse, John, Rodgers, Peter (2011) Drawing Euler Diagrams with Circles: The Theory of Piercings. IEEE Transactions on Visualization and Computer Graphics, 17 (7). pp. 182-196. (doi:10.1109/TVCG.2010.119) (KAR id:30750)
PDF
Language: English |
|
Download this file (PDF/2MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://www.cs.kent.ac.uk/pubs/2011/2982 |
Abstract
Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes which make the diagrams less comprehensible. In this paper we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints then it can be drawn with circles, which are more aesthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1109/TVCG.2010.119 |
Subjects: | Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming, |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Peter Rodgers |
Date Deposited: | 21 Sep 2012 09:49 UTC |
Last Modified: | 16 Nov 2021 10:08 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/30750 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):