Kahrs, Stefan (2010) Modularity of Convergence and Strong Convergence in Infinitary Rewriting. Logical Methods in Computer Science, 6 (3). pp. 182-196. (doi:10.2168/LMCS-6(3:18)2010) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:30698)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: http://www.cs.kent.ac.uk/pubs/2010/3104 |
Abstract
Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric d\infty.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.2168/LMCS-6(3:18)2010 |
Uncontrolled keywords: | determinacy analysis, Craig interpolants |
Subjects: | Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming, |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Stefan Kahrs |
Date Deposited: | 21 Sep 2012 09:49 UTC |
Last Modified: | 16 Nov 2021 10:08 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/30698 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):