Skip to main content
Kent Academic Repository

Structural and entropic insights into the nature of the random-close-packing limit

Anikeenko, A. V., Medvedev, N. N., Aste, Tomaso (2008) Structural and entropic insights into the nature of the random-close-packing limit. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 77 (3). ISSN 1063-651X. (doi:10.1103/PhysRevE.77.031101) (KAR id:29175)

Abstract

Disordered packings of equal sized spheres cannot be generated above the limiting density (fraction of volume occupied by the spheres) of ??0.64 without introducing some partial crystallization. The nature of this “random-close-packing” limit (RCP) is investigated by using both geometrical and statistical mechanics tools applied to a large set of experiments and numerical simulations of equal-sized sphere packings. The study of the Delaunay simplexes decomposition reveals that the fraction of “quasiperfect tetrahedra” grows with the density up to a saturation fraction of ?30% reached at the RCP limit. At this limit the fraction of aggregate “polytetrahedral” structures (made of quasiperfect tetrahedra which share a common triangular face) reaches it maximal extension involving all the spheres. Above the RCP limit the polytetrahedral structure gets rapidly disassembled. The entropy of the disordered packings, calculated from the study of the local volume fluctuations, decreases uniformly and vanishes at the (extrapolated) limit ?K?0.66. Before such limit, and precisely in the range of densities between 0.646 and 0.66, a phase separated mixture of disordered and crystalline phases is observed.

Item Type: Article
DOI/Identification number: 10.1103/PhysRevE.77.031101
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Tomaso Aste
Date Deposited: 20 Mar 2012 16:17 UTC
Last Modified: 05 Nov 2024 10:10 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/29175 (The current URI for this page, for reference purposes)

University of Kent Author Information

Aste, Tomaso.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.