Skip to main content
Kent Academic Repository

Population growth in snow geese: A modeling approach integrating demographic and survey information

Gauthier, Gilles, Besbeas, Panagiotis, Lebreton, Jean-Dominique, Morgan, Byron J. T. (2007) Population growth in snow geese: A modeling approach integrating demographic and survey information. Ecology, 88 (6). pp. 1420-1429. ISSN 0012-9658. (doi:10.1890/06-0953) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:2855)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1890/06-0953

Abstract

There are few analytic tools available to formally integrate information coming from population surveys and demographic studies. The Kalman filter is a procedure that facilitates such integration. Based on a state-space model, we can obtain a likelihood function for the survey data using a Kalman filter, which we may then combine with a likelihood for the demographic data. In this paper, we used this combined approach to analyze the population dynamics of a hunted species, the Greater Snow Goose ( Chen caerulescens atlantica), and to examine the extent to which it can improve previous demographic population models. The state equation of the state-space model was a matrix population model with fecundity and regression parameters relating adult survival and harvest rate estimated in a previous capture-recapture study. The observation equation combined the output from this model with estimates from an annual spring photographic survey of the population. The maximum likelihood estimates of the regression parameters from the combined analysis differed little from the values of the original capture-recapture analysis, though their precision improved. The model output was found to be insensitive to a wide range of coefficient of variation ( CV) in fecundity parameters. We found a close match between the surveyed and smoothed population size estimates generated by the Kalman filter over an 18-year period, and the estimated CV of the survey (0.078-0.150) was quite compatible with its assumed value (similar to 0.10). When we used the updated parameter values to predict future population size, the model underestimated the surveyed population size by 18% over a three-year period. However, this could be explained by a concurrent change in the survey method. We conclude that the Kalman filter is a promising approach to forecast population change because it incorporates survey information in a formal way compared with ad hoc approaches that either neglect this information or require some parameter or model tuning

Item Type: Article
DOI/Identification number: 10.1890/06-0953
Uncontrolled keywords: Chen caerulescens atlantica; Greater Snow Goose; hunting mortality; integrated population modeling; Kalman filter; matrix population model; population dynamics
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Q Science > QA Mathematics (inc Computing science)
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Depositing User: Louise Dorman
Date Deposited: 25 Apr 2008 13:20 UTC
Last Modified: 05 Nov 2024 09:34 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/2855 (The current URI for this page, for reference purposes)

University of Kent Author Information

Besbeas, Panagiotis.

Creator's ORCID:
CReDIT Contributor Roles:

Lebreton, Jean-Dominique.

Creator's ORCID:
CReDIT Contributor Roles:

Morgan, Byron J. T..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.