Rickayzen, Gerald (1992) The Direct Correlation-Function for A Fluid Of Hard Molecules. Journal of Molecular Liquids, 54 (4). pp. 311-320. ISSN 0167-7322. (doi:10.1016/0167-7322(92)80038-J) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:22415)
| The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
| Official URL: http://dx.doi.org/10.1016/0167-7322(92)80038-J |
|
| Additional URLs: |
|
Abstract
A new approximation is proposed for the direct correlation function of a homogeneous fluid of hard molecules. As in scaled particle theory [5], and in the scaled field particle theory of Rosenfeld [6] the direct correlation function is expressed as a linear combination of four basic functions representing different geometrical features of two molecules. In the new approximation the weights of the basic functions are determined in such a way that the approximate correlation functions satisfy four equations which are also satisfied by the Percus-Yevick (PY) solutions. When the method is applied to the hard sphere fluid with an appropriate choice of basic functions, it yields the PY solution for the correlation function.
| Item Type: | Article |
|---|---|
| DOI/Identification number: | 10.1016/0167-7322(92)80038-J |
| Additional information: | issue number: 4 |
| Subjects: |
Q Science > QD Chemistry Q Science > QC Physics |
| Institutional Unit: | Schools > School of Engineering, Mathematics and Physics > Physics and Astronomy |
| Former Institutional Unit: |
Divisions > Division of Natural Sciences > Physics and Astronomy
|
| Depositing User: | M. Nasiriavanaki |
| Date Deposited: | 20 Aug 2009 07:43 UTC |
| Last Modified: | 20 May 2025 09:34 UTC |
| Resource URI: | https://kar.kent.ac.uk/id/eprint/22415 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):

Altmetric
Altmetric