Skip to main content
Kent Academic Repository

A VLA search for embedded young stellar objects and protostellar candidates in L1630

Gibb, A.G. (1999) A VLA search for embedded young stellar objects and protostellar candidates in L1630. Monthly Notices of the Royal Astronomical Society, 304 (1). pp. 1-7. ISSN 0035-8711. (doi:10.1046/j.1365-8711.1999.02144.x) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:16803)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1046/j.1365-8711.1999.02144.x

Abstract

Five molecular cloud cores in L1630 have been observed with the VLA in C configuration at a wavelength of 3.5 cm. These cores were identified in molecular line emission by a previous study, and contain numerous clumps which are excellent candidates for sites of low-mass star formation. To a 5 sigma limit of 0.1 mJy, corresponding to an 8.4-GHz luminosity of 1.9 x 10(16) erg s(-1) Hz(-1) (uncorrected for primary beam attenuation), most (> 75 per cent) of the clumps within these cores do not have an associated radio continuum source. Of the three likely associations, two were discovered in previous surveys of LBS 23 (HH 24-26), one of which (SSV 61) shows evidence for radio variability, while the third source is spatially coincident with one of the clumps in LBS 18 and may be a new class 0 protostar candidate. Another new discovery is that HH 26IR is probably detected at the 4 sigma level. Radio emission has also been detected from two of the early-type stars exciting the NGC 2068 reflection nebula (HD 38563C and S). These results are in agreement with earlier work which proposes that, in (the northern part of) L1630, a large fraction of the molecular gas is not directly involved with star formation at the current epoch, although there is evidence that low-mass star formation is in the early stages at a number of locations. A tentative suggestion is that perhaps only young stellar objects in the earliest and latest phases of protostellar evolution exhibit detectable radio continuum emission. The earliest emission may be due to bremsstrahlung from an ionized jet, which declines as a result of a decreasing accretion rate or outflow efficiency. The later emission is due to gyrosynchrotron processes arising as a consequence of a magnetic field in the vicinity of the star-disc interface. Alternatively, a combination of the source geometry and optical depth may be responsible for such an apparent correlation. Further observations of a larger sample are required to test whether this correlation is seen in a wider view of low-mass star formation.

Item Type: Article
DOI/Identification number: 10.1046/j.1365-8711.1999.02144.x
Uncontrolled keywords: stars : formation; stars : individual : HD 38563; stars : pre-main-sequence; ISM : individual : L1630; ISM : jets and outflows; radio continuum : stars
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: I.T. Ekpo
Date Deposited: 13 Sep 2009 16:07 UTC
Last Modified: 16 Nov 2021 09:54 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/16803 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.