Woodward, Beth L., Lahiri, Sudipta, Chauhan, Anoop S., Garcia, Marcos Rios, Goodley, Lucy E., Clarke, Thomas L., Pal, Mohinder, Agathanggelou, Angelo, Jhujh, Satpal S., Ganesh, Anil N., and others. (2025) Inherited deficiency of DIAPH1 identifies a DNA double strand break repair pathway regulated by γ-actin. Nature Communications, 16 (1). Article Number 4491. ISSN 2041-1723. (doi:10.1038/s41467-025-59553-0) (KAR id:110084)
|
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
|
Download this file (PDF/5MB) |
Preview |
| Request a format suitable for use with assistive technology e.g. a screenreader | |
| Official URL: https://doi.org/10.1038/s41467-025-59553-0 |
|
Abstract
DNA double strand break repair (DSBR) represents a fundamental process required to maintain genome stability and prevent the onset of disease. Whilst cell cycle phase and the chromatin context largely dictate which repair pathway is utilised to restore damaged DNA, it has been recently shown that nuclear actin filaments play a major role in clustering DNA breaks to facilitate DSBR by homologous recombination (HR). However, the mechanism with which nuclear actin and the different actin nucleating factors regulate HR is unclear. Interestingly, patients with biallelic mutations in the actin nucleating factor DIAPH1 exhibit a striking overlap of clinical features with the HR deficiency disorders, Nijmegen Breakage Syndrome (NBS) and Warsaw Breakage Syndrome (WABS). This suggests that DIAPH1 may play a role in regulating HR and that some of the clinical deficits associated with DIAPH1 mutations may be caused by an underlying DSBR defect. In keeping with this clinical similarity, we demonstrate that cells from DIAL (DIAPH1 Loss-of-function) Syndrome patients display an HR repair defect comparable to loss of NBS1. Moreover, we show that this DSBR defect is also observed in a subset of patients with Baraitser-Winter Cerebrofrontofacial (BWCFF) syndrome associated with mutations in ACTG1 (γ-actin) but not ACTB (β-actin). Lastly, we demonstrate that DIAPH1 and γ-actin promote HR-dependent repair by facilitating the relocalisation of the MRE11/RAD50/NBS1 complex to sites of DNA breaks to initiate end-resection. Taken together, these data provide a mechanistic explanation for the overlapping clinical symptoms exhibited by patients with DIAL syndrome, BWCFF syndrome and NBS.
| Item Type: | Article |
|---|---|
| DOI/Identification number: | 10.1038/s41467-025-59553-0 |
| Uncontrolled keywords: | Humans, Actins, Adaptor Proteins, Signal Transducing, Cell Cycle Proteins, DNA-Binding Proteins, Nuclear Proteins, DNA Repair, Mutation, Male, Nijmegen Breakage Syndrome, DNA Breaks, Double-Stranded, Homologous Recombination, Formins |
| Subjects: | Q Science |
| Institutional Unit: | Schools > School of Natural Sciences > Biosciences |
| Former Institutional Unit: |
There are no former institutional units.
|
| Funders: | University of Kent (https://ror.org/00xkeyj56) |
| SWORD Depositor: | JISC Publications Router |
| Depositing User: | JISC Publications Router |
| Date Deposited: | 19 Aug 2025 08:43 UTC |
| Last Modified: | 20 Aug 2025 08:53 UTC |
| Resource URI: | https://kar.kent.ac.uk/id/eprint/110084 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):

https://orcid.org/0000-0002-8025-0119
Altmetric
Altmetric