Skip to main content
Kent Academic Repository

Neuronavigated focalized transcranial direct current stimulation administered during functional magnetic resonance imaging

Niemann, F., Shahbabaie, A., Passman, S., Riemann, S., Malinowski, R., Kocatas, H., Caisachana Guevara, L. M., Abdelmotaleb, M., Antonenko, Daria, Blankenburg, F., and others. (2024) Neuronavigated focalized transcranial direct current stimulation administered during functional magnetic resonance imaging. Journal of Visualized Experiments, 213 . Article Number e67155. E-ISSN 1940-087X. (doi:10.3791/67155) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:109226)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. (Contact us about this Publication)
Official URL:
https://doi.org/10.3791/67155

Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that allows the modulation of the excitability and plasticity of the human brain. Focalized tDCS setups use specific electrode arrangements to constrain the current flow to circumscribed brain regions. However, the effectiveness of focalized tDCS can be compromised by electrode positioning errors on the scalp, resulting in significant reductions of the current dose reaching the target brain regions for tDCS. Electrode placement guided by neuronavigation based on the individual's head and brain anatomy derived from structural magnetic resonance imaging (MRI) data may be suited to improve positioning accuracy.

This protocol describes the method of neuronavigated electrode placement for a focalized tDCS setup, which is suitable for concurrent administration during functional MRI (fMRI). We also quantify the accuracy of electrode placement and investigate electrode drift in a concurrent tDCS-fMRI experiment. Critical steps involve the optimization of electrode positions based on current modeling that considers the individual's head and brain anatomy, the implementation of neuronavigated electrode placement on the scalp, and the administration of optimized and focal tDCS during fMRI.

The regional precision of electrode placement is quantified using the Euclidean norm (L2 Norm) to determine deviations of the actual from the intended electrode positions during a concurrent tDCS-fMRI study. Any potential displacement of electrodes (drift) during the experiment is investigated by comparing actual electrode positions before and after the fMRI acquisition. In addition, we directly compare the placement accuracy of neuronavigated tDCS to that achieved by a scalp-based targeting approach (a 10-20 Electroencephalography (EEG) system). These analyses demonstrate superior placement accuracy for neuronavigation compared to scalp-based electrode placement and negligible electrode drift across a 20 min scanning period.

Item Type: Article
DOI/Identification number: 10.3791/67155
Subjects: Q Science > QP Physiology (Living systems)
R Medicine
Divisions: Divisions > Division of Natural Sciences > Kent and Medway Medical School
Divisions > Division of Human and Social Sciences > School of Psychology
Funders: University of Kent (https://ror.org/00xkeyj56)
Depositing User: Andrew Martin
Date Deposited: 18 Mar 2025 09:39 UTC
Last Modified: 19 Mar 2025 14:30 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/109226 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views of this page since July 2020. For more details click on the image.