Blaazer, Antoni R., Singh, Abhimanyu K., Zara, Lorena, Boronat, Pierre, Bautista, Lady J., Irving, Steve, Majewski, Maciej, Barril, Xavier, Wijtmans, Maikel, Danielson, U. Helena, and others. (2024) The Role of Water Networks in Phosphodiesterase Inhibitor Dissociation and Kinetic Selectivity. ChemMedChem, 19 (22). Article Number e202400417. ISSN 1860-7187. (doi:10.1002/cmdc.202400417) (KAR id:107290)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/9MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1002/cmdc.202400417 |
Abstract
AbstractIn search of new opportunities to develop Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) inhibitors that have selectivity over the off‐target human PDE4 (hPDE4), different stages of a fragment‐growing campaign were studied using a variety of biochemical, structural, thermodynamic, and kinetic binding assays. Remarkable differences in binding kinetics were identified and this kinetic selectivity was explored with computational methods, including molecular dynamics and interaction fingerprint analyses. These studies indicate that a key hydrogen bond between GlnQ.50 and the inhibitors is exposed to a water channel in TbrPDEB1, leading to fast unbinding. This water channel is not present in hPDE4, leading to inhibitors with a longer residence time. The computer‐aided drug design protocols were applied to a recently disclosed TbrPDEB1 inhibitor with a different scaffold and our results confirm that shielding this key hydrogen bond through disruption of the water channel represents a viable design strategy to develop more selective inhibitors of TbrPDEB1. Our work shows how computational protocols can be used to understand the contribution of solvent dynamics to inhibitor binding, and our results can be applied in the design of selective inhibitors for homologous PDEs found in related parasites.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1002/cmdc.202400417 |
Uncontrolled keywords: | Inhibitors, Selectivity, Kinetics, Structure-based drug discovery, Computer-aided drug design |
Subjects: |
Q Science Q Science > QH Natural history |
Divisions: | Divisions > Division of Natural Sciences > Biosciences |
Funders: |
Dutch Research Council (https://ror.org/04jsz6e67)
European Commission (https://ror.org/00k4n6c32) |
SWORD Depositor: | JISC Publications Router |
Depositing User: | JISC Publications Router |
Date Deposited: | 19 Nov 2024 15:00 UTC |
Last Modified: | 22 Nov 2024 14:35 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/107290 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):