Moradi, Heidar, Moosavian, Seyed Faroogh, Tiwari, Apoorv (2023) Topological holography: Towards a unification of Landau and beyond-Landau physics. SciPost Physics Core, 6 (4). Article Number 066. ISSN 2666-9366. (doi:10.21468/SciPostPhysCore.6.4.066) (KAR id:104671)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/5MB) |
Preview |
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.21468/SciPostPhysCore.6.4.066 |
Abstract
We outline a holographic framework that attempts to unify Landau and beyond-Landau paradigms of quantum phases and phase transitions. Leveraging a modern understanding of symmetries as topological defects/operators, the framework uses a topological order to organize the space of quantum systems with a global symmetry in one lower dimension. The global symmetry naturally serves as an input for the topological order. In particular, we holographically construct a String Operator Algebra (SOA) which is the building block of symmetric quantum systems with a given symmetry G in one lower dimension. This exposes a vast web of dualities which act on the space of G-symmetric quantum systems. The SOA facilitates the classification of gapped phases as well as their corresponding order parameters and fundamental excitations, while dualities help to navigate and predict various corners of phase diagrams and analytically compute universality classes of phase transitions. A novelty of the approach is that it treats conventional Landau and unconventional topological phase transitions on an equal footing, thereby providing a holographic unification of these seemingly-disparate domains of understanding. We uncover a new feature of gapped phases and their multi-critical points, which we dub fusion structure, that encodes information about which phases and transitions can be dual to each other. Furthermore, we discover that self-dual systems typically posses emergent non-invertible, i.e., beyond group-like symmetries. We apply these ideas to 1 + 1d quantum spin chains with finite Abelian group symmetry, using topologically-ordered systems in 2 + 1d. We predict the phase diagrams of various concrete spin models, and analytically compute the full conformal spectra of non-trivial quantum phase transitions, which we then verify numerically.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.21468/SciPostPhysCore.6.4.066 |
Projects: | New architectures for topological superconductors |
Additional information: | For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising. |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Funders: | Engineering and Physical Sciences Research Council (https://ror.org/0439y7842) |
Depositing User: | Heidar Moradi |
Date Deposited: | 19 Jan 2024 09:44 UTC |
Last Modified: | 05 Nov 2024 13:10 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/104671 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):