Skip to main content
Kent Academic Repository

Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network

Lilley, Rebecca J., Taylor, Kirsti D., Wildman, Scott S. P., Peppiatt-Wildman, Claire M. (2023) Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network. Frontiers in Physiology, 14 . Article Number 1194803. ISSN 1664-042X. (doi:10.3389/fphys.2023.1194803) (KAR id:101815)

Abstract

Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.

Item Type: Article
DOI/Identification number: 10.3389/fphys.2023.1194803
Projects: Investigating the effects of innate immune components on kidney function
Uncontrolled keywords: microvasculature, descending vasa recta, microvascular dysregulation, inflammation, pericyte
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Biosciences
Funders: University of Kent (https://ror.org/00xkeyj56)
SWORD Depositor: JISC Publications Router
Depositing User: JISC Publications Router
Date Deposited: 18 Jul 2023 09:03 UTC
Last Modified: 01 Sep 2023 03:20 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/101815 (The current URI for this page, for reference purposes)

University of Kent Author Information

Lilley, Rebecca J..

Creator's ORCID:
CReDIT Contributor Roles:

Taylor, Kirsti D..

Creator's ORCID: https://orcid.org/0000-0003-4379-1095
CReDIT Contributor Roles:

Peppiatt-Wildman, Claire M..

Creator's ORCID: https://orcid.org/0000-0002-4406-8571
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.