Contention-Based Prioritized Opportunistic Medium Access Control in Wireless LANs

Zhao, Miao and Zhu, Huiling and Shao, Wenjian and Li, Victor O.K. and Yang, Yuanyuan (2006) Contention-Based Prioritized Opportunistic Medium Access Control in Wireless LANs. In: IEEE International Conference of Communications 2006 (ICC 2006), 2006. (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL


In wireless environments, the inherent time-varying characteristics of the channel pose great challenges on medium access control design. In recent years, multiuser diversity and opportunistic medium access control schemes have been proposed to deal with the channel variation in order to efficiently improve the network throughput. In this paper, we propose a novel MAC protocol called Contention-Based Prioritized Opportunistic (CBPO) Medium Access Control Protocol. This protocol takes advantage of multiuser diversity, rate adaptation, which utilizes the multi-rate capability offered by IEEE 802.11, and black-burst (BB) contention to access the shared medium in a distributed manner. In particular, rather than simply measuring the channel condition for a node pair in communications each time, with the help of multicast RTS, the candidate users with qualified channel condition are selected and prioritized. Then the qualified receivers contend to send back prioritized clear-to-send message (CTS) with BB, which is a pulse of energy, the duration of which is proportional to the CTS priority. The user with the best channel quality is always selected to send back CTS and receive packets from the sender. Extensive simulation results show that our protocol achieves much better performance than IEEE 802.11 and other auto rate schemes with minimal additional overhead.

Item Type: Conference or workshop item (Paper)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101 Telecommunications
Divisions: Faculties > Science Technology and Medical Studies > School of Engineering and Digital Arts > Broadband & Wireless Communications
Depositing User: Yiqing Liang
Date Deposited: 15 Aug 2009 09:46
Last Modified: 25 Apr 2014 12:11
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):