Analytical study of QAM with interference cancellation for high-speed multicode CDMA

Xia, Bin and Wang, Jiangzhou (2005) Analytical study of QAM with interference cancellation for high-speed multicode CDMA. IEEE Transactions on Vehicular Technology, 54 (3). pp. 1070-1080. ISSN 0018-9545 . (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL


In this paper, we consider the multilevel quadrature amplitude modulation (M-QAM) for forward link of multicode code-division multiple-access (CDMA) systems with interference cancellation to support high data rate service, and provide an analytical bit error rate (BER) performance of the system. In the current third-generation (3G) wide-band CDMA systems, in addition to multicode transmission, M-QAM is employed for high-speed downlink packet access (HSPDA) due to its high spectral efficiency. In frequency-selective fading channels, multipath interference seriously degrades the system performance, therefore interference cancellation technique is employed at the receiver. In this paper, an analytical closed-form BER of multicode CDMA systems with QAM is presented, where two important factors (channel estimation error and additive interference) on system performance are considered. Numerical results show that the system is very sensitive to additive multipath interference. With the help of interference cancellation technique, M-QAM can be adaptively employed in high signal-to-noise ratio cases to increase system throughput, within 5 MHz bandwidth. Meanwhile, simulation results are shown to illustrate the accuracy of the analytical method. Moreover, it is found that extra pilot power should be invested for more accurate channel estimation and consequently better BER performance when using the interference cancellation technique.

Item Type: Article
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101 Telecommunications
Divisions: Faculties > Science Technology and Medical Studies > School of Engineering and Digital Arts > Broadband & Wireless Communications
Depositing User: Yiqing Liang
Date Deposited: 18 Nov 2008 12:47
Last Modified: 02 May 2014 08:23
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):