Genge, Matthew J., van Ginneken, Matthias, Suttle, Martin D., Harvey, Ralph P. (2018) Accumulation mechanisms of micrometeorites in an ancient supraglacial moraine at Larkman Nunatak, Antarctica. Meteoritics & Planetary Science, 53 (10). pp. 2051-2066. ISSN 1086-9379. E-ISSN 1945-5100. (doi:10.1111/maps.13107) (KAR id:88140)
PDF
Publisher pdf
Language: English
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
|
Download this file (PDF/1MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1111/maps.13107 |
Abstract
We report the discovery of a large accumulation of micrometeorites (MMs) in a supraglacial moraine at Larkman Nunatak in the Grosvenor Mountains of the Transantarctic Range in Antarctica. The MMs are present in abundances of ~600 particles kg−1 of moraine sediment and include a near‐complete collection of MM types similar to those observed in Antarctic blue ice and within bare‐rock traps in the Antarctic. The size distribution of the observed particles is consistent with those collected from snow collections suggesting the moraine has captured a representative collection of cosmic spherules with significant loss of only the smallest particles (<100 μm) by wind. The presence of microtektites with compositions similar to those of the Australasian strewn field suggests the moraine has been accumulating for 780 ka with dust‐sized debris. On the basis of this age estimate, it is suggested that accumulation occurs principally through ice sublimation. Direct infall of fines is suggested to be limited by snow layers that act as barriers to accumulation and can be removed by wind erosion. MM accumulation in many areas in Antarctica, therefore, may not be continuous over long periods and can be subject to climatic controls. On the basis of the interpretation of microtektites as Australasian, Larkman Nunatak deposit is the oldest known supraglacial moraine and its survival through several glacial maxima and interglacial periods is surprising. We suggest that stationary ice produced by the specific ice flow conditions at Larkman Nunatak explains its longevity and provides a new type of record of the East Antarctic ice sheet.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1111/maps.13107 |
Subjects: | Q Science > QE Geology > QE515 Geochemistry |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Funders: | Science and Technology Facilities Council (https://ror.org/057g20z61) |
Depositing User: | Matthias van Ginneken |
Date Deposited: | 14 May 2021 13:32 UTC |
Last Modified: | 04 Mar 2024 17:23 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/88140 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):