Skip to main content
Kent Academic Repository

Investigating into segmentation methods for diagnosis of respiratory diseases using adventitious respiratory sounds

Wu, Liqun, Li, Ling (2020) Investigating into segmentation methods for diagnosis of respiratory diseases using adventitious respiratory sounds. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). (doi:10.1109/EMBC44109.2020.9175783) (KAR id:83024)

Abstract

Respiratory condition has received a great amount of attention nowadays since respiratory diseases recently become the globally leading causes of death. Traditionally, stethoscope is applied in early diagnosis but it requires clinician with extensive training experience to provide accurate diagnosis. Accordingly, a subjective and fast diagnosing solution of respiratory diseases is highly demanded. Adventitious respiratory sounds (ARSs), such as crackle, are mainly concerned during diagnosis since they are indication of various respiratory diseases. Therefore, the characteristics of crackle are informative and valuable regarding to develop a computerised approach for pathology-based diagnosis. In this work, we propose a framework combining random forest classifier and Empirical Mode Decomposition (EMD) method focusing on a multi-classification task of identifying subjects in 6 respiratory conditions (healthy, bronchiectasis, bronchiolitis, COPD, pneumonia and URTI). Specifically, 14 combinations of respiratory sound segments were compared and we found segmentation plays an important role in classifying different respiratory conditions. The classifier with best performance (accuracy = 0.88, precision = 0.91, recall = 0.87, specificity = 0.91, F1-score = 0.81) was trained with features extracted from the combination of early inspiratory phase and entire inspiratory phase. To our best knowledge, we are the first to address the challenging multi-classification problem.

Item Type: Conference or workshop item (Speech)
DOI/Identification number: 10.1109/EMBC44109.2020.9175783
Uncontrolled keywords: Feature extraction; IP networks; Lips;Diseases; Lung; Training
Subjects: Q Science
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Caroline Li
Date Deposited: 19 Sep 2020 13:39 UTC
Last Modified: 09 Dec 2022 06:31 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/83024 (The current URI for this page, for reference purposes)

University of Kent Author Information

Wu, Liqun.

Creator's ORCID:
CReDIT Contributor Roles:

Li, Ling.

Creator's ORCID: https://orcid.org/0000-0002-4026-0216
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.