Skip to main content

Unusual butterfly-shaped magnetization signals and spin-glass-like behaviour in highly oriented pyrolytic graphite

Taallah, Ayoub, Wen, Jiqiu, Wang, Shanling, Grasso, Salvatore, He, Yi, Xia, JiaChen, Shuai, Gao, Odunmbaku, Omololu, Corrias, Anna, Boi, Filippo S. and others. (2020) Unusual butterfly-shaped magnetization signals and spin-glass-like behaviour in highly oriented pyrolytic graphite. Carbon, 167 . pp. 85-91. ISSN 0008-6223. (doi:10.1016/j.carbon.2020.05.104) (KAR id:81476)

PDF Author's Accepted Manuscript
Language: English


Download (1MB) Preview
[thumbnail of Carbon_2020.pdf]
Preview
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL
https://dx.doi.org/10.1016/j.carbon.2020.05.104

Abstract

We report a novel investigation on the relationship between magnetic-ordering and graphitic-structure in highly-oriented-pyrolytic-graphite (HOPG). By employing orientation-dependent-X-ray-diffraction, Raman-spectroscopy and temperature-dependent-superconductive-quantum-interference-device (T-SQUID) we examined the presence of ferromagnetic- and superconductive-ordering in HOPG systems with 1) disordered (HOPG1, containing carbon-vacancy-rich weak-Bernal-stacking and Moiré-superlattices with θmisfit ∼ 0.5°) and 2) ordered (HOPG2, containing higher-degree of Bernal-stacking and Moiré-superlattices with θmisfit ∼ 0.5°, 0.8°, 11°) graphitic-layer-arrangement. A perfect-HOPG is expected to exhibit a diamagnetic-response to an applied-magnetic-field. Instead, additional 1) ferromagnetic-signals presenting a characteristic width-enhancement with the field increasing in HOPG1 and 2) complex butterfly-shaped ferromagnetic signals in HOPG2, are demonstrated. Temperature-dependent-magnetometry evidenced further the presence of randomly oriented ferromagnetic clusters originating from topological disorder in both HOPG1 and HOPG2. These magnetic signals were explained on the basis of the percolative-type model.

Item Type: Article
DOI/Identification number: 10.1016/j.carbon.2020.05.104
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > School of Physical Sciences
Depositing User: Anna Corrias
Date Deposited: 01 Jun 2020 13:33 UTC
Last Modified: 30 May 2021 23:00 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/81476 (The current URI for this page, for reference purposes)
Corrias, Anna: https://orcid.org/0000-0002-5190-8196
  • Depositors only (login required):

Downloads

Downloads per month over past year