Skip to main content

Spatial variation in branch size promotes metapopulation persistence in dendritic river networks

Ma, Chaoqun, Shen, Yang, Bearup, Daniel, Fagan, William F., Liao, Jinbao (2020) Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshwater Biology, 65 (3). pp. 426-434. ISSN 0046-5070. (doi:10.1111/fwb.13435) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided)

PDF - Author's Accepted Manuscript
Restricted to Repository staff only until 6 December 2020.
Contact us about this Publication
[img]
Official URL
http://dx.doi.org/10.1111/fwb.13435

Abstract

1. Despite years of attention, the dynamics of species constrained to disperse within riverine networks are not well captured by existing metapopulation models, which often ignore local dynamics within branches. 2. We develop a modelling framework, based on traditional metapopulation theory, for occupancy dynamics subject to local colonization-extinction dynamics within branches and directional dispersal between branches in size-structured, bifurcating riverine networks. Using this framework, we investigate whether and how spatial variation in branch size affects species persistence for dendritic systems with directional dispersal. 3. Variation in branch size generally promotes species persistence more obviously at higher relative extinction rate, suggesting that previous studies ignoring differences in branch size in real riverine systems might overestimate species extinction risk. 4. Two-way dispersal is not always superior to one-way dispersal as a strategy for metapopulation persistence especially at high relative extinction rate. The type of dispersal which maximizes species persistence is determined by the hierarchical level of the largest, and hence most influential, branch within the network. When considering the interactive effects of up- and down-stream dispersal, we find that moderate upstream-biased dispersal maximizes metapopulation viability, mediated by spatial branch arrangement. 5. Overall, these results suggest that both branch-size variation and species traits interact to determine species persistence, theoretically demonstrating the ecological significance of their interplay.

Item Type: Article
DOI/Identification number: 10.1111/fwb.13435
Uncontrolled keywords: Metapopulation model, riverine networks, spatial branch-size heterogeneity, species dispersal, spatial branch arrangement
Subjects: Q Science > QA Mathematics (inc Computing science)
Q Science > QH Natural history > QH541 Ecology
Divisions: Faculties > Sciences > School of Mathematics Statistics and Actuarial Science > Applied Mathematics
Depositing User: Daniel Bearup
Date Deposited: 11 Nov 2019 09:09 UTC
Last Modified: 11 Feb 2020 15:41 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/78514 (The current URI for this page, for reference purposes)
Bearup, Daniel: https://orcid.org/0000-0001-8524-7659
  • Depositors only (login required):

Downloads

Downloads per month over past year