Skip to main content

Trabecular architecture of the great ape and human femoral head

Georgiou, Leoni, Kivell, Tracy L., Pahr, Dieter H., Buck, Laura T., Skinner, Matthew M. (2019) Trabecular architecture of the great ape and human femoral head. Journal of Anatomy, 234 (5). pp. 679-693. ISSN 0021-8782. (doi:10.1111/joa.12957) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided)

PDF - Author's Accepted Manuscript
Restricted to Repository staff only until 20 February 2020.
Contact us about this Publication Download (752kB)
[img]
Official URL
https://doi.org/10.1111/joa.12957

Abstract

Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a whole?epiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in medtool 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle?walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates.

Item Type: Article
DOI/Identification number: 10.1111/joa.12957
Uncontrolled keywords: African apes, cancellous, bone, functional morphology, Gorilla, hominid, Pan Pongo
Subjects: G Geography. Anthropology. Recreation > GN Anthropology
Divisions: Faculties > Social Sciences > School of Anthropology and Conservation > Biological Anthropology
Depositing User: Matthew Skinner
Date Deposited: 25 Feb 2019 16:24 UTC
Last Modified: 15 Jul 2019 14:42 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/72752 (The current URI for this page, for reference purposes)
Skinner, Matthew M.: https://orcid.org/0000-0001-8321-3543
  • Depositors only (login required):

Downloads

Downloads per month over past year