Skip to main content

Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages

Galloway, Johanna M., Senior, Laura, Fletcher, Jordan M., Beesley, Joseph L., Hodgson, Lorna R., Harniman, Robert L., Mantell, Judith M., Coombs, Jennifer, Rhys, Guto G., Xue, Wei-Feng, and others. (2018) Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages. ACS Nano, 12 (2). pp. 1420-1432. ISSN 1936-0851. (doi:10.1021/acsnano.7b07785) (KAR id:65831)


Understanding how molecules in self-assembled soft-matter nanostructures are organized is essential for improving the design of next-generation nanomaterials. Imaging these assemblies can be challenging and usually requires processing, e.g., staining or embedding, which can damage or obscure features. An alternative is to use bioinspired mineralization, mimicking how certain organisms use biomolecules to template mineral formation. Previously, we have reported the design and characterization of Self-Assembled peptide caGEs (SAGEs) formed from de novo peptide building blocks. In SAGEs, two complementary, 3-fold symmetric, peptide hubs combine to form a hexagonal lattice, which curves and closes to form SAGE nanoparticles. As hexagons alone cannot tile onto spheres, the network must also incorporate nonhexagonal shapes. While the hexagonal ultrastructure of the SAGEs has been imaged, these defects have not been observed. Here, we show that positively charged SAGEs biotemplate a thin, protective silica coating. Electron microscopy shows that these SiO2-SAGEs do not collapse, but maintain their 3D shape when dried. Atomic force microscopy reveals a network of hexagonal and irregular features on the SiO2-SAGE surface. The dimensions of these (7.2 nm ± 1.4 nm across, internal angles 119.8° ± 26.1°) are in accord with the designed SAGE network and with coarse-grained modeling of the SAGE assembly. The SiO2-SAGEs are permeable to small molecules (<2 nm), but not to larger biomolecules (>6 nm). Thus, bioinspired silicification offers a mild technique that preserves soft-matter nanoparticles for imaging, revealing structural details <10 nm in size, while also maintaining desirable properties, such as permeability to small molecules.

Item Type: Article
DOI/Identification number: 10.1021/acsnano.7b07785
Subjects: Q Science
Q Science > QD Chemistry
Q Science > QP Physiology (Living systems) > QP517 Biochemistry
Divisions: Divisions > Division of Natural Sciences > Biosciences
Depositing User: Wei-Feng Xue
Date Deposited: 31 Jan 2018 15:50 UTC
Last Modified: 29 May 2019 20:12 UTC
Resource URI: (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.