Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction

Yang, Chunzhen and Laberty-Robert, Christel and Batuk, Dmitry and Cibin, Giannantonio and Chadwick, Alan V. and Pimenta, Vanessa and Yin, Wei and Zhang, Leiting and Tarascon, Jean-Marie and Grimaud, Alexis (2017) Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. The Journal of Physical Chemistry Letters, 8 (15). pp. 3466-3472. ISSN 1948-7185. (doi: (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided)

PDF - Author's Accepted Manuscript
Restricted to Repository staff only until 7 July 2018.
Contact us about this Publication Download (962kB)
Official URL


Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1–xSrxCoO3−δ, can be dissociated from the use of surface functionalization with phosphate ion groups (Pi) that enhances the interfacial proton transfer. Results show that the Pi functionalized La0.5Sr0.5CoO3−δ gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5CoO3−δ and LaCoO3. We further demonstrate that the Pi surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts.

Item Type: Article
Subjects: Q Science
Divisions: Faculties > Sciences > School of Physical Sciences
Faculties > Sciences > School of Physical Sciences > Functional Materials Group
Depositing User: Alan Chadwick
Date Deposited: 07 Sep 2017 13:14 UTC
Last Modified: 07 Sep 2017 13:15 UTC
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):


Downloads per month over past year