Smales, Christopher Mark, Pepper, Duncan S., James, David C. (2000) Protein modification during antiviral heat bioprocessing. Biotechnology and Bioengineering, 67 (2). pp. 177-188. ISSN 0006-3592. (doi:10.1002/(SICI)1097-0290(20000120)67:2<177::AID-BIT7>3.0.CO;2-3) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:6207)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: http://dx.doi.org/10.1002/(SICI)1097-0290(20000120... |
Abstract
Heat treatment is routinely used in the preparation of:therapeutic protein biopharmaceuticals as a means of viral: inactivation. However, in undertaking virucidal :heat-treatments, a balance must be found between the bioprocessing conditions, virus kill, and the maintenance of protein integrity. In this study, we utilize a simple model protein, hen egg-white lysozyme, to investigate the relationship between antiviral bioprocess conditions(protein formulation and temperature) and the extent and type of protein modification. A variety of industrially relevant wet- and dry-heat treatments were undertaken, using formulations that included sucrose as a thermostabilizing excipient. Although there was no evidence of lysozyme aggregation or crosslinking during any of the heat-treatments, using liquid chromatography -electrospray ionization-mass spectroscopy (LC-ESI-MS) and peptide-mapping we show that protein modifications do occur with increasingly harsh heat treatment. Modifications were predominantly found after wet-heat treatment,the major covalent modification of lysozyme under these conditions being glycation of Lys(97), by either glucose-ar fructose derived from hydrolyzed sucrose. The extent of sucrose hydrolysis was itself dependent on both the duration of heat treatment and formulation composition. Advanced glycation end products (AGEs) and:additional unidentified products were also present in protein samples subjected to extended heat treatment. AGEs were; derived primarily from initial glycation by fructose and not glucose. These findings have implications for the improvement of bioprocesses to ensure protein product quality.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1002/(SICI)1097-0290(20000120)67:2<177::AID-BIT7>3.0.CO;2-3 |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Biosciences |
Depositing User: | Mark Smales |
Date Deposited: | 30 May 2009 06:16 UTC |
Last Modified: | 05 Nov 2024 09:38 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/6207 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):