Düvel, Andre, Heitjans, Paul, Fedorov, Pavel, Scholz, Gudrun, Cibin, Giannantonio, Chadwick, Alan V., Pickup, David M., Ramos, Silvia, Sayle, Lewis, Sayle, Emma, and others. (2017) Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity? Journal of the American Chemical Society, 139 (16). pp. 5842-5848. ISSN 0002-7863. E-ISSN 1520-5126. (doi:10.1021/jacs.7b00502) (KAR id:61376)
PDF
Author's Accepted Manuscript
Language: English |
|
Download this file (PDF/1MB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: https://doi.org/10.1021/jacs.7b00502 |
Abstract
Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF2, by ball milling it with BaF2, to create nanostructured Ba1–xCaxF2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including “simulating synthesis”, we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba1–xCaxF2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015, 521, 303] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated “snake-like” ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly, collective transport in glassy materials is well documented [for example, J. Chem. Phys. 2013, 138, 12A538]. Possible crystallographic nomenclatures, to be used to describe long-range order in disordered systems, may include, for example, the shape, length, and branching of the “snake” arrays. Such characterizations may ultimately provide insight and differences between long-range order in disordered, amorphous, or liquid states and processes such as ionic conductivity, melting, and crystallization.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1021/jacs.7b00502 |
Uncontrolled keywords: | Physics of Quantum Materials |
Subjects: | Q Science |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | Dean Sayle |
Date Deposited: | 18 Apr 2017 15:19 UTC |
Last Modified: | 09 Dec 2022 04:25 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/61376 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):