Skip to main content
Kent Academic Repository

Higher traces, noncommutative motives, and the categorified Chern character

Hoyois, Marc, Scherotzke, Sarah, Sibilla, Nicolo (2017) Higher traces, noncommutative motives, and the categorified Chern character. Advances in Mathematics, 309 . pp. 97-154. ISSN 0001-8708. E-ISSN 1090-2082. (doi:10.1016/j.aim.2017.01.008) (KAR id:60899)

Abstract

We propose a categorification of the Chern character that refines earlier work of Toën and Vezzosi and of Ganter and Kapranov. If X is an algebraic stack, our categorified Chern character is a symmetric monoidal functor from a category of mixed noncommutative motives over X , which we introduce, to S1-equivariant perfect complexes on the derived free loop stack LX. As an application of the theory, we show that Toën and Vezzosi's secondary Chern character factors through secondary K -theory. Our techniques depend on a careful investigation of the functoriality of traces in symmetric monoidal (?,n)-categories, which is of independent interest.

MSC

14F05; 18D05; 19D55

Item Type: Article
DOI/Identification number: 10.1016/j.aim.2017.01.008
Uncontrolled keywords: Traces; Noncommutative motives; Chern characters; Secondary K-theory
Subjects: Q Science > QA Mathematics (inc Computing science)
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Depositing User: Nicolo Sibilla
Date Deposited: 14 Mar 2017 10:01 UTC
Last Modified: 05 Nov 2024 10:54 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/60899 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.