Efficient occupancy model-fitting for extensive citizen-science data

Dennis, Emily B. and Morgan, Byron J. T. and Freeman, Stephen N. and Ridout, Martin S. and Brereton, Tom M. and Fox, Richard and Powney, Gary D. and Roy, David B. (2017) Efficient occupancy model-fitting for extensive citizen-science data. PLoS ONE, . (doi:https://doi.org/10.1371/journal.pone.0174433) (Full text available)

PDF - Publisher pdf

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.
Download (1MB) Preview
Official URL


Appropriate large-scale citizen-science data present important new opportunities for biodiversity modelling, due in part to the wide spatial coverage of information. Recently proposed occupancy modelling approaches naturally incorporate random effects in order to account for annual variation in the composition of sites surveyed. In turn this leads to Bayesian analysis and model fitting, which are typically extremely time consuming. Motivated by presence-only records of occurrence from the UK Butterflies for the New Millennium data base, we present an alternative approach, in which site variation is described in a standard way through logistic regression on relevant environmental covariates. This allows efficient occupancy model-fitting using classical inference, which is easily achieved using standard computers. This is especially important when models need to be fitted each year, typically for many different species, as with British butterflies for example. Using both real and simulated data we demonstrate that the two approaches, with and without random effects, can result in similar conclusions regarding trends. There are many advantages to classical model-fitting, including the ability to compare a range of alternative models, identify appropriate covariates and assess model fit, using standard tools of maximum likelihood. In addition, modelling in terms of covariates provides opportunities for understanding the ecological processes that are in operation. We show that there is even greater potential; the classical approach allows us to construct regional indices simply, which indicate how changes in occupancy typically vary over a species’ range. In addition we are also able to construct dynamic occupancy maps, which provide a novel, modern tool for examining temporal changes in species distribution. These new developments may be applied to a wide range of taxa, and are valuable at a time of climate change. They also have the potential to motivate citizen scientists.

Item Type: Article
Subjects: Q Science > QA Mathematics (inc Computing science) > QA276 Mathematical statistics
Q Science > QH Natural history > QH541 Ecology
Divisions: Faculties > Sciences > School of Mathematics Statistics and Actuarial Science > Statistics
Depositing User: E.B. Dennis
Date Deposited: 28 Oct 2016 14:41 UTC
Last Modified: 15 Sep 2017 15:22 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/58187 (The current URI for this page, for reference purposes)
  • Depositors only (login required):