Skip to main content
Kent Academic Repository

Novel properties of the layered material Ca2Mn3O8

Vera Stimpson, Laura Josephine (2016) Novel properties of the layered material Ca2Mn3O8. Doctor of Philosophy (PhD) thesis, University of Kent. (doi:10.22024/UniKent/01.02.54878) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided) (KAR id:54878)

PDF
Language: English

Restricted to Repository staff only
[thumbnail of 141Laura Vera Stimpson thesis.pdf]
Official URL:
https://doi.org/10.22024/UniKent/01.02.54878

Abstract

Manganese oxides and related mixed manganates have long been the subject of research interest, due to their diverse properties, such as cation exchange and molecular absorptive characteristics, in addition to excellent electrochemical and magnetic properties. Some of this research interest has stemmed from the observation of magneto-electric coupling (i.e. change in magnetic state via application of an electric field) in manganite perovskites. However, magneto-electric coupling originating as a consequence of magnetic frustration, has given rise to considerable research attention being focussed upon a range of compounds showing complex geometrically frustrated lattices (i.e. the impossibility to satisfy all magnetic spins simultaneously due to structural topology). The most obvious example of a geometrically frustrated magnetic system, is that based upon a triangular-lattice antiferromagnet. A family of materials possessing this arrangement are Delafossites, where a number of materials falling under this category have been found to possess multiferroic properties.

A material possessing similar structural properties to Delafossites, i.e. a layered structure with magnetic species adopting a triangular arrangement, is Ca2Mn3O8. This material has received a lack of research attention, with the primary research focus being based upon its catalytic properties, however the potentially interesting magnetic characteristics have been largely ignored. The aims of this thesis are to contribute an enhanced understanding of the magnetic behaviour of Ca2Mn3O8, via performing an in-depth structural, morphological and magnetic characterization (chapter 3 and 4). This work shows that Ca2Mn3O8 possesses an isosceles-type of triangular lattice, leading to magnetic frustration, in addition to exhibiting a collinear commensurate four-sublattice ???? magnetic structure (chapter 4).

Ca2Mn3O8, however, does not possess a full triangular lattice, with ordered vacancies present within the MnO6 layer, and thus can be considered to be a cation deficient Delafossite. Doping strategies to realise a full triangular lattice, via vacancy filling with magnetic and non-magnetic species, have also been investigated (chapters 5 and 6).

Manganese oxides and related mixed manganates have long been the subject of research interest, due to their diverse properties, such as cation exchange and molecular absorptive characteristics, in addition to excellent electrochemical and magnetic properties. Some of this research interest has stemmed from the observation of magneto-electric coupling (i.e. change in magnetic state via application of an electric field) in manganite perovskites. However, magneto-electric coupling originating as a consequence of magnetic frustration, has given rise to considerable research attention being focussed upon a range of compounds showing complex geometrically frustrated lattices (i.e. the impossibility to satisfy all magnetic spins simultaneously due to structural topology). The most obvious example of a geometrically frustrated magnetic system, is that based upon a triangular-lattice antiferromagnet. A family of materials possessing this arrangement are Delafossites, where a number of materials falling under this category have been found to possess multiferroic properties.

A material possessing similar structural properties to Delafossites, i.e. a layered structure with magnetic species adopting a triangular arrangement, is Ca2Mn3O8. This material has received a lack of research attention, with the primary research focus being based upon its catalytic properties, however the potentially interesting magnetic characteristics have been largely ignored. The aims of this thesis are to contribute an enhanced understanding of the magnetic behaviour of Ca2Mn3O8, via performing an in-depth structural, morphological and magnetic characterization (chapter 3 and 4). This work shows that Ca2Mn3O8 possesses an isosceles-type of triangular lattice, leading to magnetic frustration, in addition to exhibiting a collinear commensurate four-sublattice ???? magnetic structure (chapter 4).

Ca2Mn3O8, however, does not possess a full triangular lattice, with ordered vacancies present within the MnO6 layer, and thus can be considered to be a cation deficient Delafossite. Doping strategies to realise a full triangular lattice, via vacancy filling with magnetic and non-magnetic species, have also been investigated (chapters 5 and 6).

Item Type: Thesis (Doctor of Philosophy (PhD))
Thesis advisor: Arnold, Donna C.
DOI/Identification number: 10.22024/UniKent/01.02.54878
Additional information: The author of this thesis has requested that it be held under closed access. We are sorry but we will not be able to give you access or pass on any requests for access. 11/08/21
Uncontrolled keywords: Materials Science
Subjects: Q Science > Q Science (General)
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Funders: Organisations -1 not found.
Depositing User: Users 1 not found.
Date Deposited: 12 Apr 2016 09:00 UTC
Last Modified: 17 Aug 2022 12:20 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/54878 (The current URI for this page, for reference purposes)

University of Kent Author Information

Vera Stimpson, Laura Josephine.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.