Skip to main content

Determinants of the sensitivity of AMPA receptors to xenon.

Plested, Andrew J. R., Wildman, Scott S.P., Lieb, William R., Franks, Nicholas P. (2004) Determinants of the sensitivity of AMPA receptors to xenon. Anesthesiology, 100 (2). pp. 347-358. ISSN 0003-3022. E-ISSN 1528-1175. (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided)

PDF - Publisher pdf
Restricted to Repository staff only
Contact us about this Publication Download (495kB)
[img]
Official URL
http://anesthesiology.pubs.asahq.org/article.aspx?...

Abstract

BACKGROUND There is substantial and growing literature on the actions of general anesthetics on a variety of neurotransmitter-gated ion channels, with the greatest attention being focused on inhibitory gamma-amino butyric acid type A receptors. In contrast, glutamate receptors, the most important class of fast excitatory neurotransmitter-gated receptor channels, have received much less attention, and their role in the production of the anesthetic state remains controversial. METHODS alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors formed from a variety of different subunits were expressed in Xenopus oocytes and HEK-293 cells, and their sensitivities to the inhalational general anesthetics xenon, isoflurane, and halothane were determined using two-electrode voltage clamp and patch clamp techniques. The effects of desensitization on anesthetic sensitivity were investigated using cyclothiazide and site-directed mutagenesis. An ultrarapid application system was also used to mimic rapid high-concentration glutamate release at synapses. RESULTS The authors show that xenon can potently inhibit AMPA receptors when assayed using bath application of kainate. However, when the natural neurotransmitter l-glutamate is used under conditions in which the receptor desensitization is blocked and the peak of the glutamate-activated response can be accurately measured, the pattern of inhibition changes markedly. When desensitization is abolished by a single-point mutation (L497Y in GluR1 and the equivalent mutation L505Y in GluR4), the xenon inhibition is eliminated. When AMPA receptors are activated by glutamate using an ultrarapid application system that mimics synaptic conditions, sensitivity to xenon, halothane, and isoflurane is negligible. CONCLUSIONS AMPA receptors, when assayed in heterologous expression systems, showed a sensitivity to inhalational anesthetics that was minimal when glutamate was applied rapidly at high concentrations. Because these are the conditions that are most relevant to synaptic transmission, the authors conclude that AMPA receptors are unlikely to play a major role in the production of the anesthetic state by inhalational agents.

Item Type: Article
Subjects: R Medicine > RM Therapeutics. Pharmacology
Divisions: Faculties > Sciences > Medway School of Pharmacy
Depositing User: Scott S.P. Wildman
Date Deposited: 09 Dec 2015 17:30 UTC
Last Modified: 29 May 2019 16:40 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/52970 (The current URI for this page, for reference purposes)
  • Depositors only (login required):

Downloads

Downloads per month over past year