Skip to main content
Kent Academic Repository

Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1).

Wildman, Scott S.P., Brown, Sean G., Rahman, Mary, Noel, Carole A., Churchill, Linda, Burnstock, Geoffrey, Unwin, Robert J., King, Brian F. (2002) Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1). Molecular Pharmacology, 62 (4). pp. 957-966. ISSN 0026-895X. E-ISSN 1521-0111. (doi:10.1124/mol.62.4.957) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:52967)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1124/mol.62.4.957

Abstract

The recombinant rat P2X(5) (rP2X(5)) receptor, a poorly understood ATP-gated ion channel, was studied under voltage-clamp conditions and compared with the better understood homomeric rP2X(1) receptor with which it may coexist in vivo. Expressed in defolliculated Xenopus laevis oocytes, rP2X(5) responded to ATP with slowly desensitizing inward currents that, for successive responses, ran down in the presence of extracellular Ca(2+) (1.8 mM). Replacement of Ca(2+) with either Ba(2+) or Mg(2+) prevented rundown, although agonist responses were very small, whereas reintroduction of Ca(2+) for short periods of time (<300 s) before and during agonist application yielded consistently larger responses. Using this Ca(2+)-pulse conditioning, rP2X(5) responded to ATP and other nucleotides (ATP, 2-methylthio-ATP, adenosine-5'-O-(thiotriphosphate), 2'-&-3'-O-(4-benzoylbenzoyl)-ATP, alpha,beta-methylene-ATP, P(1)-P((4))-diadenosine-5'-phosphate, and more) with pEC(50) values within 1 log unit of respective determinations for rP2X(1). Only GTP was selective for rP2X(5), although 60-fold less potent than ATP. At rP2X(5), lowering extracellular pH reduced the potency and efficacy of ATP, whereas extracellular Zn(2+) ions (0.1-1000 microM) potentiated then inhibited ATP responses in a concentration-dependent manner. However, these modulators affected rP2X(1) receptors in subtly different ways-with increasing H(+) and Zn(2+) ion concentrations reducing agonist potency. For P2 receptor antagonists, the potency order at rP2X(5) was pyridoxal-5-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) > 2',3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP) > suramin > reactive blue 2 (RB-2) > diinosine pentaphosphate (Ip(5)I). In contrast, the potency order at rP2X(1) was TNP-ATP = Ip(5)I > PPADS > suramin = RB-2. Thus, the Ca(2+)-sensitized homomeric rP2X(5) receptor is similar in agonist profile to homomeric rP2X(1)-although it can be distinguished from the latter by GTP agonism, antagonist profile, and the modulatory effects of H(+) and Zn(2+) ions.

Item Type: Article
DOI/Identification number: 10.1124/mol.62.4.957
Subjects: R Medicine > RM Therapeutics. Pharmacology
Divisions: Divisions > Division of Natural Sciences > Medway School of Pharmacy
Depositing User: Scott S.P. Wildman
Date Deposited: 09 Dec 2015 17:20 UTC
Last Modified: 05 Nov 2024 10:39 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/52967 (The current URI for this page, for reference purposes)

University of Kent Author Information

Wildman, Scott S.P..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.