Skip to main content
Kent Academic Repository

A tale of two cores: Triggered massive star formation in the bright-rimmed cloud SFO 75

Urquhart, J.S., Thompson, M.A., Morgan, L.K., Pestalozzi, M.R., White, Glenn J., Muna, D.N. (2007) A tale of two cores: Triggered massive star formation in the bright-rimmed cloud SFO 75. Astronomy and Astrophysics, 467 (3). pp. 1125-1137. ISSN 0004-6361. (doi:10.1051/0004-6361:20077236) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:52244)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:


Context.Bright-rimmed clouds (BRCs) are isolated molecular clouds located on the edges of evolved HII regions. Star formation within the BRCs may have been triggered through the propagation of photoionisation-induced shocks driven by the expansion of the HII region.

Aims.The main focus of this paper is to investigate the current level of star formation within one of these clouds and evaluate to what extent, if any, star formation may have been triggered.

Methods.We present a detailed multi-wavelength study of the BRC SFO 75, including 1.3 cm and 1.2 mm continuum, and 13CO and ammonia spectral line observations. To build up a comprehensive picture of the local environment we complement our observations with archival data from the 2MASS, GLIMPSE and IRAS surveys.

Results.The 13CO and 1.2 mm emission reveals the presence of a dense core located behind the bright rim of the cloud which is approximately coincident with that of the IRAS point source. From an analysis of the IRAS and 1.2 mm fluxes we derive a dust temperature of ~30 K, a luminosity of $L_{\rm {bol}}$ = 1.6$\times$104 $L_\odot$ and estimate the core mass to be ~570 $M_\odot$. The higher resolution ammonia observations resolve the 1.2 mm core into two distinct cores, one directly behind the cloud's rim (Core A) and the second located slightly farther back (Core B). These have masses of 8-15 $M_\odot$ and 3.5-7 $M_\odot$ for Core A and Core B respectively, which are significantly larger than their virial masses. Comparing the morphology of Core A with that of the photon-dominated region and ionised boundary layer leaves little doubt that it is being strongly affected by the ionisation front. 2MASS and GLIMPSE archive data which reveal a small cluster of three deeply embedded ($A_{\rm {v}}\sim$ 20 mag) high- and intermediate-mass young stellar objects towards Core A leads us to conclude that the star formation found towards this core has been triggered. In stark contrast, Core B appears to have a much simpler, almost spherical, morphology. No stars are found towards Core B. We find evidence supporting the presence of shocked gas within the surface layers of the cloud which appears to extend to midway between the two ammonia cores.

Conclusions.The scenario that emerges from our analysis is one where the two ammonia cores pre-date the arrival of the ionisation front. Since its arrival the over-pressure of the ionised gas at the surface of the cloud has driven shocks into the surface layers of the cloud. The propagation of these shocks through Core A have triggered the formation of a small cluster of massive stars, however, the shock front has not yet propagated deeply enough into the cloud to have affected the evolution of Core B.

Item Type: Article
DOI/Identification number: 10.1051/0004-6361:20077236
Uncontrolled keywords: adio continuum: stars -- stars: formation -- stars: early-type -- stars: pre-main sequence -- ISM: clouds -- ISM: individual object: SFO 75.
Subjects: Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: James Urquhart
Date Deposited: 30 Nov 2015 16:44 UTC
Last Modified: 16 Nov 2021 10:21 UTC
Resource URI: (The current URI for this page, for reference purposes)

University of Kent Author Information

Urquhart, J.S..

Creator's ORCID:
CReDIT Contributor Roles:

Thompson, M.A..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.