Skip to main content

Simpler is better: a novel genetic algorithm to induce compact multi-label chain classifiers

Gonçalves, Eduardo C. and Plastino, Alexandre and Freitas, Alex A. (2015) Simpler is better: a novel genetic algorithm to induce compact multi-label chain classifiers. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. GECCO Genetic and Evolutionary Computation Conference . ACM, New York, USA, pp. 559-566. ISBN 978-1-4503-3472-3. (doi:10.1145/2739480.2754650)

Abstract

Multi-label classification (MLC) is the task of assigning multiple class labels to an object based on the features that describe the object. One of the most effective MLC methods is known as Classifier Chains (CC). This approach consists in training q binary classifiers linked in a chain, y1 → y2 → ... → yq, with each responsible for classifying a specific label in {l1, l2, ..., lq}. The chaining mechanism allows each individual classifier to incorporate the predictions of the previous ones as additional information at classification time. Thus, possible correlations among labels can be automatically exploited. Nevertheless, CC suffers from two important drawbacks: (i) the label ordering is decided at random, although it usually has a strong effect on predictive accuracy; (ii) all labels are inserted into the chain, although some of them might carry irrelevant information to discriminate the others. In this paper we tackle both problems at once, by proposing a novel genetic algorithm capable of searching for a single optimized label ordering, while at the same time taking into consideration the utilization of partial chains. Experiments on benchmark datasets demonstrate that our approach is able to produce models that are both simpler and more accurate.

Item Type: Book section
DOI/Identification number: 10.1145/2739480.2754650
Uncontrolled keywords: data mining, machine learning, classification, multi-label classifier chain, evolutionary algorithms
Subjects: Q Science > Q Science (General) > Q335 Artificial intelligence
Divisions: Faculties > Sciences > School of Computing > Computational Intelligence Group
Depositing User: Alex Freitas
Date Deposited: 12 Aug 2015 09:48 UTC
Last Modified: 23 Sep 2019 11:56 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/50176 (The current URI for this page, for reference purposes)
  • Depositors only (login required):

Downloads

Downloads per month over past year