Skip to main content
Kent Academic Repository

Clouds, filaments, and protostars: The Herschel Hi-GAL Milky Way

Molinari, Sergio, Swinyard, Bruce M., Bally, John, Barlow, Michael J., Bernard, Jean P., Martin, Peter G., Moore, Toby J.T., Noriega-Crespo, Alberto, Plume, René, Testi, Leonardo, and others. (2010) Clouds, filaments, and protostars: The Herschel Hi-GAL Milky Way. Astronomy & Astrophysics, 518 (8). 0-0. ISSN 0004-6361. (doi:10.1051/0004-6361/201014659) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:50089)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1051/0004-6361/201014659

Abstract

We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2° × 2° tiles approximately centered at l = 30° and l = 59°. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around AV ? 1 is exceeded for the regions in the l = 59° field; a AV value between 5 and 10 is found for the l = 30° field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm -2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.

Item Type: Article
DOI/Identification number: 10.1051/0004-6361/201014659
Uncontrolled keywords: Galaxy: general, ISM: clouds, ISM: structure, Stars: formation, Column density, Compact sources, Critical level, Galactic plane, Galaxy: general, HERSCHEL, ISM : clouds, ISM: structure, Large-scale converging, Milky ways, Numerical simulation, Physical parameters, Protostars, Reduction strategy, Stars: formation, Surface density, Clouds, Data reduction, Galaxies, Stars, Filaments (lamp)
Subjects: Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Giles Tarver
Date Deposited: 10 Aug 2015 15:55 UTC
Last Modified: 16 Nov 2021 10:20 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/50089 (The current URI for this page, for reference purposes)

University of Kent Author Information

Morgan, L.K..

Creator's ORCID:
CReDIT Contributor Roles:

Smith, Michael D..

Creator's ORCID: https://orcid.org/0000-0002-4289-5952
CReDIT Contributor Roles:

Thompson, M.A..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.