Arola, E., Strange, Paul, Gyorffy, Balazs L. (1997) Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron. Physical Review B: Condensed Matter and Materials Physics, 55 (1). pp. 472-484. ISSN 0163-1829. (doi:10.1103/PhysRevB.55.472) (KAR id:50036)
PDF (Publishers version is permissible.)
Publisher pdf
Language: English |
|
Download this file (PDF/222kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1103/PhysRevB.55.472 |
Abstract
We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar- ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic, spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s function expressed in terms of the path operators in the multiple-scattering theory allows us to include the contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we have done calculations on the anomalous magnetic scattering at the K , L_II , and L_III absorption edges of ferromagnetic iron.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1103/PhysRevB.55.472 |
Uncontrolled keywords: | Physics of Quantum Materials |
Subjects: | Q Science > QC Physics > QC176 Solid state physics |
Divisions: | Divisions > Division of Natural Sciences > Physics and Astronomy |
Depositing User: | Paul Strange |
Date Deposited: | 06 Aug 2015 09:19 UTC |
Last Modified: | 16 Nov 2021 10:20 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/50036 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):