Germanium(II) and tin(II) complexes of a sterically demanding phosphanide ligand

Izod, Keith, Stewart, John, Clark, Ewan R., Clegg, William, Harrington, Ross W. (2010) Germanium(II) and tin(II) complexes of a sterically demanding phosphanide ligand. Inorganic Chemistry, 49 (10). pp. 4698-4707. ISSN 0020-1669. (doi:10.1021/ic1003534) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. (Contact us about this Publication)
Official URL
http://www.dx.doi.org/10.1021/ic1003534

Abstract

The reaction between PhPCl2 and 1 equiv of RLi, followed by in situ reduction with LiAlH4 and an aqueous workup yields the secondary phosphane PhRPH [R = (Me3Si)2CH]. Treatment of PhRPH with n-BuLi in diethyl ether generates the lithium phosphanide (RPhP)Li(Et 2O)n [15(Et2O)], which may be crystallized as the tetrahydrofuran (THF) adduct (RPhP)Li(THF)3 [15(THF)]. Compound 15(Et2O) reacts with 1 equiv of either NaO-tBu or KO-tBu to give the corresponding sodium and potassium phosphanides (RPhP)Na(Et2O) n (16) and (RPhP)K(Et2O)n (17), which may be crystallized as the amine adducts [(RPhP)Na(tmeda)]2 [16(tmeda)] and [(RPhP)K(pmdeta)]2 [17(pmdeta)], respectively. The reaction between 2 equiv of 17 and GeCl2(1,4-dioxane) gives the dimeric compound [(RPhP)2Ge]2'Et2O (18'Et2O). In contrast, the reaction between 2 equiv of 15 and SnCl2 preferentially gives the ate complex (RPhP)3SnLi(THF) (19) in low yield; 19 is obtained in quantitative yield from the reaction between SnCl2 and 3 equiv of 15. Crystallization of 19 from n-hexane/THF yields the separated ion pair complex [(RPhP)3Sn][Li(THF)4] (19a); exposure of 19a to vacuum for short periods leads to complete conversion to 19. Treatment of GeCl2(1,4-dioxane) with 3 equiv of 15 yields the contact ion pair (RPhP)3GeLi(THF) (20), after crystallization from n-hexane/THF. Compounds 15(THF), 16(tmeda), 17(pmdeta), 18'Et2O, 19a, and 20 have been characterized by elemental analyses, multielement NMR spectroscopy, and X-ray crystallography. While 15(THF) is monomeric, both 16(tmeda) and 17(pmdeta) are dimeric in the solid state. The diphosphagermylene 18'Et2O adopts a dimeric structure in the solid state with a syn,syn-arrangement of the phosphanide ligands, and this structure appears to be preserved in solution. The ate complex 19a crystallizes as a separated ion pair, whereas the analogous ate complex 20 crystallizes as a discrete molecular species. The structures of 19 and 20 are retained in non-donor solvents, while dissolution in THF yields the separated ion pairs 19a and [(RPhP)3Ge][Li(THF)4] (20a). © 2010 American Chemical Society.

Item Type: Article
DOI/Identification number: 10.1021/ic1003534
Subjects: Q Science > QD Chemistry
Divisions: Faculties > Sciences > School of Physical Sciences > Functional Materials Group
Depositing User: Giles Tarver
Date Deposited: 29 Jul 2015 15:18 UTC
Last Modified: 29 May 2019 14:56 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/49882 (The current URI for this page, for reference purposes)
  • Depositors only (login required):