Skip to main content
Kent Academic Repository

Design and testing of prototype handheld scanning probes for optical coherence tomography

Demian, D., Duma, V.F., Sinescu, C., Negrutiu, M.L., Cernat, R., Topala, F.I., Hutiu, G., Bradu, Adrian, Podoleanu, Adrian G.H. (2014) Design and testing of prototype handheld scanning probes for optical coherence tomography. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228 (8). pp. 743-753. ISSN 0954-4119. (doi:10.1177/0954411914543963) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:49310)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:


Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic - for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat - in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. © IMechE 2014.

Item Type: Article
DOI/Identification number: 10.1177/0954411914543963
Additional information: This is available as OPEN ACCESS by clicking on the URL.
Uncontrolled keywords: biomedical imaging, ceramic materials, dentistry, design, handheld scanning probes, optical coherence tomography, prosthesis, Prototype, testing, Ceramic materials, Coherent light, Dentistry, Design, Ergonomics, Materials testing, Medical imaging, Optical tomography, Prosthetics, Scanning, Testing, Tomography, Biomedical imaging, Clinical environments, Clinical investigation, Optomechanical components, Prototype, Scanning probes, Spectral domain optical coherence tomographies, Swept source optical coherence tomographies, Software prototyping, bioengineering, computer aided design, dental device, devices, equipment design, human, optical coherence tomography, Computer-Aided Design, Dental Instruments, Equipment Design, Human Engineering, Humans, Tomography, Optical Coherence
Subjects: Q Science > QC Physics
R Medicine > R Medicine (General) > R857.O6 Optical instruments
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Giles Tarver
Date Deposited: 15 Jul 2015 08:51 UTC
Last Modified: 17 Aug 2022 10:59 UTC
Resource URI: (The current URI for this page, for reference purposes)

University of Kent Author Information

Cernat, R..

Creator's ORCID:
CReDIT Contributor Roles:

Bradu, Adrian.

Creator's ORCID:
CReDIT Contributor Roles:

Podoleanu, Adrian G.H..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.