Altadmri, Amjad and Ahmed, Amr (2009) Automatic semantic video annotation in wide domain videos based on similarity and commonsense knowledgebases. In: 2009 IEEE International Conference on Signal and Image Processing Applications. IEEE, pp. 74-79. ISBN 978-1-4244-5560-7. E-ISBN 978-1-4244-5561-4. (doi:10.1109/ICSIPA.2009.5478723) (KAR id:45943)
PDF
Publisher pdf
Language: English |
|
Download this file (PDF/835kB) |
|
Request a format suitable for use with assistive technology e.g. a screenreader | |
Official URL: http://dx.doi.org/10.1109/ICSIPA.2009.5478723 |
Abstract
In this paper, we introduce a novel framework for automatic Semantic Video Annotation. As this framework detects possible events occurring in video clips, it forms the annotating base of video search engine. To achieve this purpose, the system has to able to operate on uncontrolled wide-domain videos. Thus, all layers have to be based on generic features.
This framework aims to bridge the "semantic gap", which is the difference between the low-level visual features and the human's perception, by finding videos with similar visual events, then analyzing their free text annotation to find a common area then to decide the best description for this new video using commonsense knowledgebases.
Experiments were performed on wide-domain video clips from the TRECVID 2005 BBC rush standard database. Results from these experiments show promising integrity between those two layers in order to find expressing annotations for the input video. These results were evaluated based on retrieval performance.
Item Type: | Book section |
---|---|
DOI/Identification number: | 10.1109/ICSIPA.2009.5478723 |
Uncontrolled keywords: | Semantic Video Annotation, Video Indexing, Video Retrieval, video search engine, semantic gap, uncontrolled videos, Content based, Commonsense Knowledgebases, visual events, free text annotation, Event Detection, Wide Domain Videos, Similarity, Automatic Semantic Video Annotation, Video Annotation, Video Information Retrieval, Content based video retrieval, uncontrolled wide-domain videos, generic features, low-level visual features, human's perception, wide-domain video clips, TRECVID, TRECVID BBC rush, standard video database, retrieval performance. |
Subjects: |
Q Science > Q Science (General) > Q335 Artificial intelligence Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming, > QA76.575 Multimedia systems Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming, > QA76.76.E95 Expert Systems (Intelligent Knowledge Based Systems) T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing |
Divisions: |
Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts |
Depositing User: | Amjad Altadmri |
Date Deposited: | 15 Jan 2015 22:06 UTC |
Last Modified: | 16 Nov 2021 10:18 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/45943 (The current URI for this page, for reference purposes) |
- Link to SensusAccess
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):