Skip to main content
Kent Academic Repository

Karanjin interferes with ABCB1, ABCC1, and ABCG2

Michaelis, Martin, Rothweiler, Florian, Nerreter, Thomas, Sharifi, Mohsen, Ghafourian, Taravat, Cinatl, Jindrich (2014) Karanjin interferes with ABCB1, ABCC1, and ABCG2. Journal of Pharmacy and Pharmaceutical Sciences, 17 (1). pp. 92-105. ISSN 1482-1826. (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:40831)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://ejournals.library.ualberta.ca/index.php/JPP...

Abstract

PURPOSE

The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin.

METHODS

Cells expressing the relevant transporters (ABCB1: UKF-NB-3ABCB1, UKF-NB-3rVCR10; ABCC1: G62, PC-3rVCR20; ABCG2: UKF-NB-3ABCG2) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities.

RESULTS

Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1µM.

CONCLUSIONS

Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

METHODS

Cells expressing the relevant transporters (ABCB1: UKF-NB-3ABCB1, UKF-NB-3rVCR10; ABCC1: G62, PC-3rVCR20; ABCG2: UKF-NB-3ABCG2) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities.

RESULTS

Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1µM.

CONCLUSIONS

Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.

Item Type: Article
Subjects: R Medicine > RM Therapeutics. Pharmacology
Divisions: Divisions > Division of Natural Sciences > Biosciences
Depositing User: Martin Michaelis
Date Deposited: 24 Apr 2014 09:55 UTC
Last Modified: 17 Aug 2022 10:57 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/40831 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.