Structural Characterisation of Bioactive Glasses

Fitzgerald, Victoria (2007) Structural Characterisation of Bioactive Glasses. Doctor of Philosophy (PhD) thesis, University of Kent. (Full text available)

PDF - Author's Accepted Manuscript
Download (3MB) Preview
[img]
Preview

Abstract

Melt-quenched glasses containing SiO2, CaO, Na2O and P2O5, and sol-gel derived glasses containing SiO2 and CaO are known to have bioactive properties. Foaming of binary sol-gel derived bioactive glasses containing SiO2 and CaO can be used to produce 3D porous scaffolds which mimic the structure of trabecular bone, increasing the potential for these glasses to be used as bioactive bone-regenerative materials. A range of experimental techniques have been used to investigate the atomic scale structure of these materials, and also to observe the reaction mechanisms which occur when these materials are immersed in a simulated physiological solution (simulated body fluid, SBF) and a standard cell culture medium (tris buffer solution, TBS). A robust structural model of the most bioactive of the melt-quenched glasses, namely Bioglass®, has been produced by combining high energy X-ray and neutron diffraction data, magic angle spinning nuclear magnetic resonance (MAS NMR) and reverse Monte Carlo (RMC) modelling. It has been shown that Ca clustering occurs in the glass, which is of direct relevance to the understanding of the facile nature of calcium within such glasses giving rise to its relatively rapid diffusion from the solid into solution. Hydroxyapatite has been confirmed as the calcium phosphate phase which grows on the surface of Bioglass® when immersed in the standard cell culture medium, TBS. A new method which can be used for in-situ time resolved high-energy X-ray diffraction studies of reaction mechanisms, such as those involved when a bioactive glass is immersed in a simulated physiological solution, is decribed in this thesis. Small-angle X-ray scattering has enabled the growth of mesopores to be observed during the foamed sol-gel stabilisation process. In-situ simultaneous small and wide angle X-ray scattering measurements of a foam in SBF have shown that the mesoporous network facilitates the rapid growth of relatively high-density HCA, which will therefore eventually replace the initial silicate glass as the material bounding the macropores. The data presented herein reveal the structure of highly important materials in the field of biomaterials and enable a link to be made between the atomic scale structure of the materials and their bioactive properties.

Item Type: Thesis (Doctor of Philosophy (PhD))
Subjects: Q Science > QC Physics
Divisions: Faculties > Sciences > School of Physical Sciences
Depositing User: Suzanne Duffy
Date Deposited: 11 Mar 2014 14:14 UTC
Last Modified: 24 Jul 2015 08:21 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/38707 (The current URI for this page, for reference purposes)
  • Depositors only (login required):

Downloads

Downloads per month over past year