Salama, Khalid M. and Freitas, Alex A. (2013) ACO-based Bayesian network ensembles for the hierarchical classification of ageing-related proteins. In: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 11th European Conference. Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 80-91. ISBN 978-3-642-37188-2. E-ISBN 978-3-642-37189-9. (doi:10.1007/978-3-642-37189-9_8) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:34306)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: https://doi.org/10.1007/978-3-642-37189-9_8 |
Abstract
The task of predicting protein functions using computational techniques is a major research area in the field of bioinformatics. Casting the task into a classification problem makes it challenging, since the classes (functions) to be predicted are hierarchically related, and a protein can have more than one function. One approach is to produce a set of local classifiers; each is responsible for discriminating between a subset of the classes in a certain level of the hierarchy. In this paper we tackle the hierarchical classification problem in a local fashion, by learning an ensemble of Bayesian network classifiers for each class in the hierarchy and combining their outputs with four alternative methods: a) selecting the best classifier, b) majority voting, c) weighted voting, and d) constructing a meta-classifier. The ensemble is built using ABC-Miner, our recently introduced Ant-based Bayesian Classification algorithm. We use different types of protein representations to learn different classification models. We empirically evaluate our proposed methods on an ageing-related protein dataset created for this research.
Item Type: | Book section |
---|---|
DOI/Identification number: | 10.1007/978-3-642-37189-9_8 |
Uncontrolled keywords: | ant colony optimization, data mining, machine learning, classifier ensemble, Bayesian network classifier |
Subjects: | Q Science > Q Science (General) > Q335 Artificial intelligence |
Divisions: | Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing |
Depositing User: | Alex Freitas |
Date Deposited: | 17 Jun 2013 17:22 UTC |
Last Modified: | 05 Nov 2024 10:17 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/34306 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):