Decomposing symmetric powers of certain modular representations of cyclic groups

Shank, R. James and Wehlau, David L. (2009) Decomposing symmetric powers of certain modular representations of cyclic groups. In: Campbell, Eddy and Helminck, Aloysius G. and Kraft, Hanspeter and Wehlau, David L., eds. Symmetry and Spaces: In Honor of Gerry Schwarz. Progress in Mathematics, 278 . Birkhauser, Berlin, pp. 169-196. ISBN 978-0-8176-4874-9 (Print) 978-0-8176-4875-6 (Online). (doi:10.1007/978-0-8176-4875-6_9)

PDF (Decomposing Symmetric Powers)
Download (335kB) Preview
Official URL


For a prime number p, we construct a generating set for the ring of invariants for the p+1 dimensional indecomposable modular representation of a cyclic group of order p^2. We then use the constructed invariants to describe the decomposition of the symmetric algebra as a module over the group ring, confirming the Periodicity Conjecture of Ian Hughes and Gregor Kemper for this case.

Item Type: Book section
DOI/Identification number: 10.1007/978-0-8176-4875-6_9
Additional information: The revised version of the paper includes a calculation of the Noether number of the p+1 dimensional modular indecomposable representation of the cyclic group of order p^2 and the Hilbert series of the corresponding ring of invariants
Subjects: Q Science > QA Mathematics (inc Computing science) > QA150 Algebra
Divisions: Faculties > Sciences > School of Mathematics Statistics and Actuarial Science > Pure Mathematics
Depositing User: R James Shank
Date Deposited: 06 Jun 2008 17:15 UTC
Last Modified: 28 May 2019 13:38 UTC
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):


Downloads per month over past year