Chen, Yanping, Huang, Fenglin, Yi, Nianyu, Liu, Wenbin (2011) A Legendre–Galerkin Spectral Method for Optimal Control Problems Governed by Stokes Equations. SIAM Journal on Numerical Analysis, 49 (4). pp. 1625-1648. ISSN 0036-1429. (doi:10.1137/080726057) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:28219)
The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided. | |
Official URL: http://dx.doi.org/10.1137/080726057 |
Abstract
In this paper, we study the Legendre–Galerkin spectral approximation of distributed optimal control problems governed by Stokes equations. We show that the discretized control problems satisfy the well-known Babuška–Brezzi conditions by choosing an appropriate pair of discretization spaces for the velocity and the pressure. Constructing suitable base functions of the discretization spaces leads to sparse coefficient matrices. We first derive a priori error estimates in both $H^1$ and $L^2$ norms for the Legendre–Galerkin approximation of the unconstrained control problems. Then both a priori and a posteriori error estimates are obtained for control problems with the constraints of an integral type, thanks to the higher regularity of the optimal control. Finally, some illustrative numerical examples are presented to demonstrate the error estimates.
Item Type: | Article |
---|---|
DOI/Identification number: | 10.1137/080726057 |
Subjects: | H Social Sciences > H Social Sciences (General) |
Divisions: | Divisions > Kent Business School - Division > Kent Business School (do not use) |
Depositing User: | Kasia Senyszyn |
Date Deposited: | 12 Oct 2011 09:55 UTC |
Last Modified: | 16 Nov 2021 10:06 UTC |
Resource URI: | https://kar.kent.ac.uk/id/eprint/28219 (The current URI for this page, for reference purposes) |
- Export to:
- RefWorks
- EPrints3 XML
- BibTeX
- CSV
- Depositors only (login required):