Skip to main content

The fourth Painleve equation

Clarkson, Peter (2008) The fourth Painleve equation. In: Guo, Li and Sit, William Y., eds. Differential Algebra and Related Topics. World Scientific, Singapore. ISBN 978-981-283-371-6. (KAR id:23090)

Language: English
Download (1MB) Preview
[thumbnail of Clarkson-DARTIIrev3.pdf]
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL:


The six Painleve equations (PI–PVI) were first discovered about a hundred years ago by Painleve and his colleagues in an investigation of nonlinear second-order ordinary differential equations. During the past 30 years there has been considerable interest in the Painleve equations primarily due to the fact that they arise as symmetry reductions of the soliton equations which are solvable by inverse scattering. Although first discovered from pure mathematical considerations, the Painleve equations have arisen in a variety of important physical applications.

The Painleve equations may be thought of as nonlinear analogues of the classical special functions. They have a Hamiltonian structure and associated isomonodromy problems, which express the Painleve equations as the compatibility condition of two linear systems. The Painleve equations also admit symmetries under affine Weyl groups which are related to the associated B¨acklund transformations. These can be used to generate hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the classical special functions, for special values of the parameters. Further solutions of the Painleve equations have some interesting asymptotics which are use in applications. In this paper I discuss some of the remarkable properties which the Painleve equations possess using the fourth Painleve equation (PIV) as an illustrative example.

Item Type: Book section
Subjects: Q Science > QA Mathematics (inc Computing science) > QA372 Ordinary differential equations
Q Science > QA Mathematics (inc Computing science) > QA351 Special functions
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Depositing User: Peter Clarkson
Date Deposited: 26 Feb 2010 13:43 UTC
Last Modified: 16 Nov 2021 10:01 UTC
Resource URI: (The current URI for this page, for reference purposes)
Clarkson, Peter:
  • Depositors only (login required):


Downloads per month over past year