Skip to main content

Studying Parallel Evolutionary Algorithms: The cellular Programming Case

Capcarrere, Mathieu S., Tettamanzi, Andrea, Tomassini, Marco, Sipper, Moshe (1998) Studying Parallel Evolutionary Algorithms: The cellular Programming Case. In: Parallel Problem Solving from Nature V. 1498. pp. 573-582. Spriner-Verlag ISBN 0302-9743 (Print) 1611-3349 (Online). (doi:10.1007/BFb0056899) (KAR id:21608)

Language: English
Download (346kB) Preview
[thumbnail of Studying_Parallel_Evolutionary_Algorithms_The_cellular_Programming_Case.pdf]
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL


Parallel evolutionary algorithms, studied to some extent over the past few years, have proven empirically worthwhile—though there seems to be lacking a better understanding of their workings. In this paper we concentrate on cellular (fine-grained) models, presenting a number of statistical measures, both at the genotypic and phenotypic levels. We demonstrate the application and utility of these measures on a specific example, that of the cellular programming evolutionary algorithm, when used to evolve solutions to a hard problem in the cellular-automata domain, known as synchronization.

Item Type: Conference or workshop item (UNSPECIFIED)
DOI/Identification number: 10.1007/BFb0056899
Subjects: Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming,
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Mark Wheadon
Date Deposited: 25 Aug 2009 16:11 UTC
Last Modified: 16 Feb 2021 12:32 UTC
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):


Downloads per month over past year