Triple youden rectangles - a new class of fully balanced combinatorial arrangements

Preece, Donald A. (1994) Triple youden rectangles - a new class of fully balanced combinatorial arrangements. Ars Combinatoria, 37 . pp. 175-182. ISSN 0381-7032. (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided)

The full text of this publication is not available from this repository. (Contact us about this Publication)


Triple Youden rectangles are defined and examples are given. These combinatorial arrangements constitute a special class of k x v row-and-column designs, k < v, with superimposed treatments from three sets, namely a single set of v treatments and two sets of k treatments. The structure of each of these row-and-column designs incorporates that of a symmetrical balanced incomplete block design with v treatments in blocks of size k. Indeed, when either of the two sets of k treatments is deleted from a k x v triple Youden rectangle, a k x v double Youden rectangle is obtained; when both are deleted, a k x v Youden square remains. The paper obtains an infinite class of triple Youden rectangles of size k x (k + 1). Then it presents a 4 x 13 triple Youden rectangle which provides a balanced layout for two packs of playing-cards, and a 7 x 15 triple Youden rectangle which incorporates a particularly remarkable 7 x 15 Youden square. Triple Youden rectangles are fully balanced in a statistical as well as a combinatorial sense, and those discovered so far are statistically very efficient.

Item Type: Article
Subjects: Q Science > QA Mathematics (inc Computing science)
Divisions: Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science
Depositing User: O.O. Odanye
Date Deposited: 10 Jun 2009 08:28
Last Modified: 04 Jun 2014 08:51
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):


Downloads per month over past year