Skip to main content
Kent Academic Repository

A simple nonlinear dynamic model for unemployment: Explaining the Spanish case

Faria, Joao Ricardo, Leon-Ledesma, Miguel A. (2008) A simple nonlinear dynamic model for unemployment: Explaining the Spanish case. Discrete Dynamics in Nature and Society, . ISSN 1026-0226. (doi:98195210.1155/2008/981952) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:15061)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1155/2008/981952

Abstract

Spanish unemployment is characterized by three distinct regimes of low, medium, and high unemployment and by a fast transition between them. This paper presents a simple nonlinear dynamic model that is able to explain this behavior with multiple equilibria and jumps describing the transition between equilibria. The model has only a small number of parameters capturing the fundamentals of labor markets and macroeconomic and institutional factors. The model is capable of generating unemployment dynamics that encompass the "unique" natural rate hypothesis, the structuralist hypothesis, and the hysteresis hypothesis. Copyright (c) 2008 J. R. Faria and M. A. Leon-Ledesma.

Item Type: Article
DOI/Identification number: 98195210.1155/2008/981952
Subjects: H Social Sciences > H Social Sciences (General)
Divisions: Divisions > Division of Human and Social Sciences > School of Economics
Depositing User: Suzanne Duffy
Date Deposited: 03 Jun 2010 14:40 UTC
Last Modified: 16 Nov 2021 09:53 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/15061 (The current URI for this page, for reference purposes)

University of Kent Author Information

Leon-Ledesma, Miguel A..

Creator's ORCID: https://orcid.org/0000-0002-3558-2990
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.