Skip to main content

On the hierarchical classification of G Protein-Coupled Receptors

Davies, Matthew N., Secker, Andrew D., Freitas, Alex A., Mendao, Miguel, Timmis, Jon, Flower, Darren R. (2007) On the hierarchical classification of G Protein-Coupled Receptors. Bioinformatics, 23 (23). pp. 3113-3118. ISSN 1367-4803. (doi:10.1093/bioinformatics/btm506) (KAR id:14527)

Language: English
Click to download this file (181kB) Preview
[thumbnail of On_the_hierarchical_classification_of_G_Protein-Coupled_Receptors.pdf]
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL:


Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs.

Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.

Item Type: Article
DOI/Identification number: 10.1093/bioinformatics/btm506
Subjects: Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming,
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Mark Wheadon
Date Deposited: 24 Nov 2008 18:04 UTC
Last Modified: 16 Nov 2021 09:52 UTC
Resource URI: (The current URI for this page, for reference purposes)
Freitas, Alex A.:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.