Skip to main content

Approximate Bayesian computation in population genetics

Beaumont, Mark A., Zhang, Wenyang, Balding, David J. (2002) Approximate Bayesian computation in population genetics. Genetics, 162 (4). pp. 2025-2035. ISSN 0016-6731. (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:10599)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.


We propose a new method for approximate Bayesian statistical inference on the basis of summary statistics. The method is suited to complex problems that arise in population genetics, extending ideas developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved by fitting a local-linear regression of simulated parameter values on simulated summary statistics, and then substituting the observed summary statistics into the regression equation. The method combines many of the advantages of Bayesian statistical inference with the computational efficiency of methods based on summary statistics. A key advantage of the method is that the nuisance parameters are automatically integrated out in the simulation step, so that the large numbers of nuisance parameters that arise in population genetics problems can be handled without difficulty. Simulation results indicate computational and statistical efficiency that compares favorably with those of alternative methods previously proposed in the literature. We also compare the relative efficiency of inferences obtained using methods based on summary statistics with those obtained directly from the data using MCMC.

Item Type: Article
Subjects: Q Science > QA Mathematics (inc Computing science)
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Mathematics, Statistics and Actuarial Science
Funders: Engineering and Physical Sciences Research Council (
Depositing User: Judith Broom
Date Deposited: 14 Sep 2008 14:50 UTC
Last Modified: 12 Jul 2022 10:39 UTC
Resource URI: (The current URI for this page, for reference purposes)
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.