Skip to main content
Kent Academic Repository

Examining effects of native microbiota on host ageing in Caenorhabditis elegans

Vazquez-Prada Ansaldo, Mireya (2024) Examining effects of native microbiota on host ageing in Caenorhabditis elegans. Doctor of Philosophy (PhD) thesis, University of Kent,. (doi:10.22024/UniKent/01.02.104901) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided) (KAR id:104901)

PDF
Language: English

Restricted to Repository staff only until February 2027.

Contact us about this Publication
[thumbnail of 89VAZQUEZPRADA_Thesis_Corrections.pdf]
Official URL:
https://doi.org/10.22024/UniKent/01.02.104901

Abstract

The gut microbiome modulates many aspects of host physiology, including the ageing process. There is a pressing need for suitable, tractable models with which to investigate how host-microbe interactions affect host ageing. Studies performed in the nematode Caenorhabditis elegans have made significant contributions to biological research but have largely been performed outside the context of the nematode's native microbiota. A growing body of evidence has demonstrated that wild C. elegans harbour a rich and diverse community of commensal microorganisms. Here, we leverage the combined model system of C. elegans and ecologically relevant symbionts to identify the pathways underlying microbiome effects on age-related phenotypes in the host.

In this study, eleven ecologically relevant bacterial species were selected to model the native C. elegans microbiome. This microbial assembly, referred to as the Experimental Microbiome, was found to survive in the nematode intestine and support normal development. Colonisation with native microbiota members suppressed age-associated locomotor decline - an effect that does not involve modifications to muscle structure or function but requires the engagement of various signalling pathways in the host. The genetic components of innate immunity, iron processing, and mitochondrial homeostasis are all required for Experimental Microbiome-mediated preservation of motor function. Indeed, cultivation on the Experimental Microbiome alters mitochondrial network dynamics and occludes normal patterns of mitochondrial ageing. The Experimental Microbiome was also found to suppress age-associated proteotoxicity in a transgenic C. elegans strain expressing human amyloid beta, with protection provided by live bacteria as well as cell-free extracellular material. Altogether, this work highlights the microbiome's capacity to influence host ageing by engaging host signalling pathways and illustrates the potential of targeting host-microbe interactions to extend healthspan.

Item Type: Thesis (Doctor of Philosophy (PhD))
Thesis advisor: Ezcurra, Marina
DOI/Identification number: 10.22024/UniKent/01.02.104901
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Biosciences
Funders: University of Kent (https://ror.org/00xkeyj56)
SWORD Depositor: System Moodle
Depositing User: System Moodle
Date Deposited: 09 Feb 2024 08:37 UTC
Last Modified: 12 Feb 2024 10:27 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/104901 (The current URI for this page, for reference purposes)

University of Kent Author Information

Vazquez-Prada Ansaldo, Mireya.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.