Skip to main content
Kent Academic Repository

Decentralised sliding mode control for nonlinear interconnected systems with uncertainties

Ji, Nan (2023) Decentralised sliding mode control for nonlinear interconnected systems with uncertainties. Doctor of Philosophy (PhD) thesis, University of Kent,. (doi:10.22024/UniKent/01.02.102476) (KAR id:102476)

Abstract

With the advances in science and technology, nonlinear large-scale interconnected systems have widely appeared in the real life. Traditional centralised control methods have inevitable disadvantages when they are used to deal with complex nonlinear interconnected systems with uncertainties. In connection with this, people desire to develop the novel control strategy which can be applied to complex interconnected systems. Therefore, decentralised sliding mode control (SMC) for interconnected systems has attracted great attention in related fields due to its advantages, for instance, simple structure, low cost of calculation, fast response, reduced-order sliding mode dynamics and insensitivity to matched variation of parameters and disturbances in systems. This thesis focuses on the development of decentralised SMC for nonlinear interconnected systems with uncertainties under certain assumptions. Several methods and different techniques have been considered in design of the controller to improve the robustness. The main contributions of this thesis include: • The state feedback decentralised SMC is developed for nonlinear interconnected systems with matched uncertainty and mismatched unknown interconnections. A state feedback decentralised SMC strategy, under the assumption that all system states are accessible, is proposed to attenuate the impact of the uncertainties by using bounds on uncertainties and interconnections. The bounds used in the design are fully nonlinear which provide higher applicability for different complex interconnected systems. Especially, for this fully nonlinear system, the proposed method does not need to use the technique of linearisation, which is widely used in existing work to deal with nonlinear interconnected systems with uncertainties. • The dynamic observer is applied to complex nonlinear interconnected systems with matched and mismatched uncertainties. This dynamic observer can estimate the system states which can not be achieved during the controller design. The proposed method has great identification ability with small estimated errors for the states of nonlinear interconnected systems with matched and mismatched uncertainties. It should be pointed out that the considered uncertainties of nonlinear interconnected systems have general forms, which means that the proposed method can be effectively used in more generalised nonlinear interconnected systems. • A variable structure observer-based decentralised SMC is proposed to control a class of nonlinear interconnected systems with matched and mismatched uncertainties. Based on the designed dynamic observer, a dynamic decentralised output feedback SMC using outputs and estimated states is presented to control the interconnected systems with matched and mismatched uncertainties. The nonlinear interconnections are employed in the control design to reduce the conservatism of the developed results. The bounds of the uncertainties are relaxed which are nonlinear and take more general forms. Moreover, the limitation for the interconnected system is reduced when compared with the existing results in which the proposed strategies adopt the full-order observer. Besides that, the presented method improves the robustness of nonlinear interconnected systems to be against the effects of uncertainties. This thesis also provides several numerical and practical simulations to demonstrate the effectiveness of the proposed decentralised SMC for nonlinear interconnected systems with matched uncertainty, mismatched uncertainty and nonlinear interconnections.

Item Type: Thesis (Doctor of Philosophy (PhD))
DOI/Identification number: 10.22024/UniKent/01.02.102476
Uncontrolled keywords: Decentralised control, sliding mode control, nonlinear control, interconnected systems
Subjects: T Technology
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Engineering and Digital Arts
Funders: University of Kent (https://ror.org/00xkeyj56)
SWORD Depositor: System Moodle
Depositing User: System Moodle
Date Deposited: 16 Aug 2023 16:10 UTC
Last Modified: 17 Aug 2023 09:57 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/102476 (The current URI for this page, for reference purposes)

University of Kent Author Information

Ji, Nan.

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.