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Abstract

Wavefront sensing is a critical component in the adaptive optics systems used for
modern high resolution imaging modalities. One limitation of current wavefront sensor
designs is that they have a large depth of field, rendering them incapable of differentiat-
ing light returned from targets with many layers (such as the human retina). Instead,
the measured wavefront is the superposition of the wavefronts returned from each layer.
By combining principles from low-coherence interferometry and wavefront sensing, a
depth-resolved wavefront sensor may be realised. This allows only light from within the
coherence-gate of the interferometer to be measured by the wavefront sensing device.
By adjusting the axial position of the coherence-gate, wavefronts from distinct layers
of a multi-layer object may be measured. This method has been demonstrated for the
Shack-Hartmann wavefront sensor but requires an external PC for image processing
and wavefront reconstruction.

This dissertation presents, for the first time, a depth-resolved laser ray tracing
wavefront sensor. Results are shown, in the form of Zernike modes, which demonstrate
the ability of the instrument to resolve wavefronts from a multi-layer target (two stacked
microscope slides and a mirror). Also, an FPGA based embedded system was developed
for all command, control, image processing and wavefront reconstruction functions.
This highly specialised system is able to perform these operations in real-time, limited
only by the frame rate of the available camera.

Specific attention is given to the portion of the system focused on wavefront recon-
struction. Zernike modes are commonly used in adaptive optics systems to represent
optical wavefronts. However, real-time calculation of Zernike modes is time consuming
due to two factors: the large factorial components in the radial polynomials used to
define them, and the large inverse matrix calculation needed for the linear fit. This dis-
sertation presents an efficient parallel method for calculating Zernike coefficients from
phase gradients and its real-time implementation using an FPGA by pre-calculation
and storage of subsections of the large inverse matrix. The architecture exploits sym-
metries within the Zernike modes to achieve a significant reduction in memory require-
ments and a speed-up of 2.9 when compared to published results utilising a 2D-FFT
method for a grid size of 8 x 8. Analysis of the processor element’s internal word
length requirements show that 24-bit precision in pre-calculated values of the Zernike
mode partial derivatives ensures less than 0.5% error per Zernike coefficient and an
overall error of less than 1%. The design has been synthesized on a Xilinx Virtex-6
XCVLX240T FPGA.
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1. INTRODUCTION

1 Introduction

Optical wavefront sensing is a critical component in adaptive optics (AO) technology, with

applications in diverse imaging fields such as astronomy and ophthalmology. While the

applications are varied, the core method remains the same: measure and correct the opti-

cal aberrations of a wavefront. In astronomy this involves correcting wavefront distortions

caused by the atmosphere of the Earth. With retinal imaging techniques, such as optical-

coherence tomography (OCT) [20], scanning laser ophthalmoscopy (SLO) [62] and confocal

microscopy [30] it involves correcting distortions due to imperfections in the optics of the eye.

Both cases involve first measuring the distorted wavefront. This is done utilising a device

known as a wavefront sensor (WFS). Once the distortions are known they can be corrected,

typically by utilising either a deformable mirror (DM) [16, 17], spatial light modulator [24],

or similar device. By minimising these distortions, the quality of the final image can be

greatly improved [23]. In general, the combination of a wavefront sensor and correction

device is known as AO [70, 3, 15].

1.1 Motivation

This research presents, for the first time, a depth-resolved laser ray-tracing wavefront sensor

on an embedded systems platform. The motivation to perform this research stems from

Adrian Podoleanu and Simon Tuohy’s 2013 patent: ”Method for depth resolved wavefront

sensing, depth resolved wavefront sensors and method and apparatus for optical imaging”

US 8451452 B2 [39]. In it, they begin with several types of well-known wavefront sensors,

including the Shack-Hartmann wavefont sensor (SHS) and laser ray tracing (LRT) wavefront

sensor; and describe improving them with the addition of depth-resolution. In essence, the

standard wavefront sensor form-factors are modified to reduce the depth of field. The axial

location (in depth) of the wavefront is able to be selected, either by time domain or frequency

domain methods.

A natural starting point for realising a depth-resolved wavefront sensor, as described

in [39], is to focus on the SHS. The SHS is the most widely used wavefront sensor with

applications in many fields, as discussed in Chapter 2. As a result, the initial depth-resolved

wavefront sensor implementations focused on the SHS. Figure 1 shows the current state of

depth-resolved wavefront sensing research. Standard LRT and SHS belong to the general

category of wavefront sensors. Patent [39] describes the depth resolved versions of both. The

initial implementation of a depth-resolved SHS was published in 2010 in a paper entitled
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1. INTRODUCTION

“Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront

sensor” [59]. In this paper, depth-resolved wavefront sensing was demonstrated for a single-

layer object (in this case a DM). This paper focused more on the system’s ability to remove

stray reflections and increase the SNR than demonstrate measuring wavefronts returned from

a multi-layer target. It was left to the 2012 paper “Demonstration of real-time depth-resolved

Shack–Hartmann measurement” [61] to show the ability of this technique to measure multiple

wavefronts, selected in depth, from a multi-layer target (in this case stacked microscope

slides). Both of these papers will be discussed in detail in Chapter 3. Combined, these

papers demonstrate the ability of the SHS modality to perform depth-resolved wavefront

sensing.

Wavefront 
sensors

Standard Laser 
Ray Tracing

(LRT)

Standard 
Shack-Hartmann

(SHS)

US Patent 8451452 B2:
Coherence-Gated LRT and SHS 

Coherence-Gated
Shack-Hartmann 
with single-layer 

object.

2010 

Coherence-Gated
Shack-Hartmann 
with multi-layer 

object.

2012 

Coherence-Gated
Laser Ray Tracing 

with multi-layer 
object

??? 

Coherence-Gated
Laser Ray Tracing 
with single-layer 

object

??? 

Figure 1: The general topic of wavefront sensors (shown at the top) can be broken down into many
specific technologies, two of which are the SHS and LRT (shown in row 2). US Patent 8451452 B2
describes expanding the capabilities of these devices to include depth-resolved wavefront sensing.
The ability of SHS to perform such measurements was demonstrated in 2010 and 2012 (shown on
the right), but has yet to be shown for LRT (shown on the left).
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1. INTRODUCTION

The current situation presents the opportunity to explore realising depth-resolved wave-

front sensing in other modalities. LRT is a well-established [31, 32, 35] wavefront sensing

technique that closely resembles the process of geometric ray-tracing typically used to anal-

yse optical systems. LRT sequentially scans a target object with a thin pencil laser beam

producing a spot pattern similar to that of a SHS, the centroids of which may be used to

reconstruct the wavefront. While the specifics of LRT will be discussed in Chapter 4, it is

important here to note the motivation for adding depth-resolution to LRT:

• LRT devices exist as commercialised instruments already in use in ophthalmic appli-

cations [57]. Current realisations of this technology do not exhibit depth-resolved ca-

pabilities making them impractical for 3D imaging modalities such as OCT (discussed

below).

• Many biological tissues such as the human retina, skin, and teeth are composed of

distinct cellular layers which may be resolved by OCT type imaging systems. Wavefront

sensors that work in tandem with such systems need to operate in a depth-resolved

manner.

• Unlike the SHS, LRT is similar in form-factor to common OCT setups and will be

simpler to integrate, as a wavefront sensor, into an existing OCT system.

• The serialised nature of data acquisition in LRT makes it well suited for implementation

on an embedded systems platform.

• Including depth-resolution comes with the added benefit of removing stray reflections

from the sensor. Only light selected from the limited depth of field is imaged, leading

to other extraneous sources of light being removed.

In this new implementation, depth-resolution is added to a standard LRT by combining

it with a low-coherence interferometer. By employing coherence-gating, the depth of field

of the LRT is reduced to within the coherence-length of the optical source. This allows the

system to reject light from outside the coherence-gate and perform depth-resolved wavefront

sensing. It has the added benefit of rejecting stray reflections from the optical system which

can often confuse or render unusable standard wavefront sensors.

This research attempts to fill both of the LRT boxes in Figure 1 by demonstrating

depth-resolved LRT on both a single-layer object (a mirror) and a multi-layer object (stacked

microscope slides). This will show that depth-resolved LRT agrees with standard LRT by
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performing both types of measurements on the same single-layer object. In addition, it will

show the ability for this method to resolve multiple wavefronts, returned in depth, from a

multi-layer object. Lastly, this research takes an instrumentation-based approach to the LRT

hardware development by employing an embedded systems field-programmable gate array

(FPGA) platform for all system command and control, data acquisition and image processing

tasks. In this manner, the use of a stand-alone PC for such tasks is rendered unnecessary,

leading to a completely self-contained system which future research could refine with the goal

of integration into an existing imaging system. The FPGA based system is also much faster

than a standard CPU based computer allowing the system to run in near real-time. It should

be noted that the use of the term real-time is somewhat ambiguous. In this research the

term will be used to refer a computing system that is, in practice, limited not by its ability

to quickly process data but by the external hardware resources, such as camera frame-rates,

optical scanner slew-rates, and the like. It also excludes systems that gather data and then

proceed with post-processing on a standard PC. This was the case with [59] and [61] where

images were gathered and sent to a PC for processing after all data acquisition was complete.

This will be in contrast to the LRT system demonstrated here, where all data processing

is done in parallel with the data acquisition. For all practical purposes the result of the

wavefront sensing is available as soon as the entirety of the images have been collected.

With these motivations in place the discussion may now turn to a general outline of the

research.

1.2 Outline

This research project is cross-disciplinary by nature, as the format of this thesis represents.

The two main components focus on the optical portion of the depth-resolved LRT instru-

ment and the FPGA based embedded system on which it rests. As a result, the relevant

literature is reviewed on a chapter by chapter basis, as it applies to material being presented.

For example, the literature relevant to LRT is presented in Chapter 4 where the initial LRT

implementation is presented; while the literature relevant to the FPGA architecture is pre-

sented in Chapter 5 which details the design of the embedded systems platform.

The astronomical origins of WFS are explored in Chapter 2 but wavefront sensing also

has a diverse history in ophthalmic applications [19]. While many methods have been stud-

ied including the Tscherning aberroscope [58] and Howland’s cross-cylinder aberroscope [18]

both astronomical and ophthalmic applications have settled upon the SHS [52] as the method

of choice. Details of the SHS will be discussed in Chapter 2. While the SHS is ubiquitous
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in its usage it does have limitations. As noted above one limitation of the SHS and other

current methods is that they exhibit a large depth of field inhibiting their ability to resolve

wavefronts returned from objects composed of multiple layers. Multi-layer objects are com-

mon in biological imaging where specimens are often composed of many distinct layers of

cells, for example, the human retina and human skin. This is important in imaging modali-

ties such as OCT that are commonly used to produce 3D volumetric images of such targets.

For example, Figure 2, taken from [8] shows the ten layers of the human retina from a high

resolution OCT image on the top and a standard histologic micrograph on the bottom (from

[10]).

Figure 2: Cellular layers in the human retina are clearly visible, demonstrating the ability of
modalities such as OCT to perform imaging on multi-layer targets. Top: High resolution OCT
image taken from [8]. Bottom: A standard histologic micrograph taken from [10]

OCT is a non-invasive interferometric technique that can be employed in vivo to image

bulk biological tissues. OCT was first developed in 1991 by Huang, et al. [20] and has rapidly

developed over the past several decades into a high-speed imaging modality. Recently, OCT

has benefited from the addition of the wavefront correcting abilities of AO. AO is well

known in the astronomical community for its ability to compensate for phase distortions due
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to atmospheric turbulence, pushing the functionality of ground based telescopes ever closer

to their space based counterparts [11]. Based mainly on the classic combination of a DM

and a SHS, AO-OCT systems have succeeded in increasing the quality of OCT images. In

spite of this success, one short coming of the current breed of AO systems is their reliance on

sensors that are unable to resolve wavefront aberrations as a function of depth. The ability

to resolve depth based aberrations would be extremely useful in the field of microscopy and

especially biological tissue imaging where aberrations often originate from scattering layers

beyond the focal plane. A novel method utilized for resolving wavefront aberrations as a

function of depth is the technique known as coherence-gated wavefront sensing. Utilizing the

methods of low-coherence phase-shifting interferometry coherence-gated wavefront sensing

is able to reject light acquired from outside the focal plane, focusing on a small area of

interest in the sample. Currently, this methodology has been shown to function by Tuohy &

Podoleanu in the form of a Coherence-Gated Shack Hartmann WFS (CGSHS) [59] and in a

virtual form by Feierabend, Rüeckel and Denk [9, 49, 48, 47].

Refractive laser surgery revolutionized the explorations of wavefront aberrations in the

human eye [19]. In contrast to psycho-physical subjective methods this catalysed a progres-

sion of objective measurement methodologies that characterized ocular wavefront aberra-

tions directly [29]. This technology has branched out to general biological imaging, such as

microscopy and tomography [3], and has had prolific uses in the dynamic field of OCT. Spe-

cialized wavefront sensing is currently critical in modalities such as OCT for high contrast

imaging from multi-layer scattering samples using adaptive optics [70, 15].

As imaging modalities such as OCT approach real-time operation [63], wavefront sensing

techniques are required to run at high-speed in order to be applicable. For this reason, an

embedded systems platform was chosen for the control, image processing, and wavefront

reconstruction of this instrument. A Virtex-6 FPGA architecture was developed which in-

terfaces directly to a CCD camera for image acquisition and post-processing. The wavefront

is reconstructed in parallel on the FPGA and presented in the form of Zernike modes. This

all takes place at high-speed, limited only by the frame-rate of the CCD camera.

First, Chapter 2 will give a brief introduction to wavefront sensing including the com-

mon optical aberrations and the utilisation of Zernike modes to describe them. In Chap-

ter 3 the topic of wavefront sensing is expanded to include coherence-gating which allows

for depth-resolved wavefront sensing . This includes a discussion of implementations of

a coherence-gated virtual SHS and a physical coherence-gated Shack-Hartmann wavefront

sensor (CGSHS). Next, Chapter 4 gives an introduction to the basics of LRT including

the single-pass and double-pass implementations. Descriptions and results of both non-
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coherence-gated and coherence-gated LRT are given for non-real-time (Labview based) im-

plementations. Next, the focus turns to the FPGA architecture used in the final coherence-

gated laser ray tracing (CGLRT) instrument in Chapter 5. This includes descriptions of

the general command and control functions, camera interface, and wavefront reconstruction

modules. Lastly in Chapter 6, the embedded systems based CGLRT instrument is discussed

and results are shown demonstrating the ability of the system to perform high-speed depth

resolved wavefront sensing.
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2. WAVEFRONT SENSING

2 Wavefront Sensing

As discussed in Chapter 1, this cross-disciplinary project comprises the development of both

optical and electronic systems. This chapter will focus on introducing the foundational

topics needed to facilitate a more in-depth discussion of wavefront sensing in Chapters 3, 4

and 6. First, the concept of an optical wavefront is discussed. This leads naturally into

the topic of adaptive optics of which the wavefront sensor is a critical component. The

topic will then move to the Shack-Hartmann wavefront sensor, which is both ubiquitous,

and useful for elaborating on the basic operating principles of wavefront sensors in general.

After measuring, the topic of reconstructing the wavefront is covered, including both the

zonal and modal methods. From there, Zernike modes are discussed as they are the most

common method of mathematically representing wavefronts. Lastly, some common optical

aberrations and their physical causes are discussed. This helps tie in the abstract notion

of Zernike modes and the aberrations they describe to physical phenomenon. With these

concepts in hand, the discussion may progress to the specific wavefront sensing techniques

used in the research presented in this dissertation.

2.1 An Introduction to Wavefront Sensing

The twinkling stars that fill the night sky are a beautiful sight. However, to astronomers,

the twinkle of a star embodies one of the great difficulties of ground based astronomy. The

atmosphere of the Earth distorts the light from the distant stars decreasing the resolution

of images obtained on the ground. It is this distortion, due to continuous variations in the

refractive index of the atmosphere, that causes the familiar twinkle in starlight.

When discussing the distortion of light the concept of the wavefront is often employed.

A wavefront is a surface of constant phase of a wave as it propagates through space. Typical

wavefronts are either considered planar or spherical. Collimated light is a common example

of a planar wavefront. Figure 3 shows several planar wavefronts superimposed on a light

wave.
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Figure 3: Plane waves or planar wavefronts. Planes of constant phase (wavefronts) are shown in
red.

A spherical wavefront, on the other hand, is typically formed by a source such as stars

and light-bulbs which emit waves in all directions. Figure 4 shows an illustration of a light-

bulb emitting spherical wavefronts. The wavefront is only partially shown and in reality it is

emitted as a spherical surface in all directions. Parts of planar wavefronts may be converted

to spherical wavefronts and vice-versa via lenses. When a collimated beam of light (planar

wave) is incident upon a lens the wavefront is converted from planar to spherical as the beam

it focuses. The opposite is true for converging or diverging beams that are collimated by a

lens, converting the spherical wavefront to planar.
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2. WAVEFRONT SENSING

Figure 4: A spherical wavefront. Sources such as light-bulbs and stars, that emit waves in all
directions, generate spherical wavefronts.

In practice, a localised small area on a spherical wavefront of very large radius can be

approximated as planar. This is especially true for stars, in which the spherical wavefront

has expanded to a great degree as it travels through space. Figure 5 shows a (now planar)

illustration of a wavefront from a star (shown in red) travelling through the vacuum of space

undistorted. As the wavefront travels through the turbulent atmosphere of the Earth the

constantly varying refractive index distorts the wavefront from its original shape. This dis-

tortion gives the impression that the star is twinkling but also has the drawback of decreasing

the resolution of images taken by ground based telescopic instruments.
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2. WAVEFRONT SENSING

Figure 5: The wavefront from a star, shown in red, is distorted by the turbulence in the Earth’s
atmosphere.

Dealing with such distortion is critical, and astronomers are seemingly left with two

options: place the telescope above the atmosphere (for example, the Hubble Space Telescope)

or develop a method for correcting the distortions on the ground. The second option, first

proposed by Babcock in 1953 [2], proposed manipulating an optical wavefront to reduce

aberrations. Over time, this has developed into the field known as AO which attempts to

measure and correct wavefront distortions in light. A simplified illustration of an ocular

adaptive optics system is shown in Figure 6. In essence, a sensor is used to continuously

measure the deviation of a wavefront and the deviation is corrected, in a closed-loop fashion,

by another device, typically a deformable mirror. Over the years the art of AO has rapidly

progressed such that current ground based, AO equipped telescopic systems are rivalling the

performance of their space based counterparts [43]. As the technology has matured, it has

also found its way beyond astronomy into other imaging modalities such as microscopy [42]

and in vivo biological imaging [37].
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A critical component in the art of AO is the ability to sense distortions of the incoming

wavefront so that corrections may be applied. Many methods now exist for wavefront sensing,

including SHS [52], LRT [35, 31], Modal Sensing such as Curvature [44] and Phase Diversity

[12], Scanning Knife Edge tests [54], and Pyramid sensors [41]. This dissertation focuses on

LRT, but it is prudent to first review the origins and function of SHS as it is by far the most

common and well known WFS.

Figure 6: Simplified illustration of an adaptive optics system. In this example the system is
measuring the aberrations of a human eye. In it, aberrated light is returned from the optics of
the eye. The light is incident upon a deformable mirror (DM) which corrects for the distortions
as commanded by the closed-loop control system. A mirror and beam splitter (BS) send the light
to a wavefront sensor (in this example a Shack-Hartmann). The wavefront sensor measures the
distortion in the wave and sends this information to the control system. The corrected wavefront
is now available to the system.
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2.2 The Shack-Hartmann Wavefront Sensor

Wavefront sensing had its origin in the fields of astronomy and the military. Perhaps the

best known wavefront sensor, the SHS, had its genesis in the needs of the “Great Refractor”

telescope in Potsdam, Germany. In the early 1900’s Johannes Hartmann (1865-1936) was

a professor of astrophysics at Potsdam where he worked with the large telescope. Unfortu-

nately, the telescope was incapable of performing the required imaging due to aberrations

in its optics. In order to identify the faulty optic Hartmann devised a method of evaluating

wavefront quality that would become known as the Hartmann screen test [14]

Figure 7: Johannes Hartmann

The test involved placing a plate with many

evenly spaced holes in it over the aperture of the tele-

scope. This plate created many small apertures that

could be imaged via photographic plates at either fo-

cal plane of the given optic. By measuring where the

ray bundles cross the optical axis, the quality of the

optic can be inferred. High quality optics will have

corresponding rays crossing at the same points on the

optical axis, whereas in poor quality optics the ray lo-

cation will vary. Using this technique Hartmann was

able to identify the Great Refractor’s primary lens as

the culprit [51]. The Hartmann screen test continues

to be a useful diagnostic tool in the testing of optical

elements, but the need to better characterize optical

wavefronts soon pushed the Hartmann screen test into

new territory.

The catalyst for this next step came from the needs of the US Air Force during the Cold

War era of the 1960’s. An attempt by the US Air Force to develop a method of imaging

satellites from the ground led to the need to compensate for atmospheric turbulence in the

images. The Air Force approached the Optical Sciences Center at the University of Arizona

where one Aden Meinel was put on the project. Meinel suggested using the Hartmann screen

test to characterize the atmospheric turbulence and his co-worker Roland Shack was given

the task of testing the method’s feasibility. He soon found that the available light from

the satellite images (most of the light was needed to image the dim satellites) was far too

small to successfully perform the Hartmann screen test. Shack cleverly overcame this issue

by placing small lenses in the holes of the Hartmann screen, focusing the light into spots,

thereby increasing the intensity.
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Figure 8: A basic Shack-Hartmann wavefront sensor.

The SHS continues to be a critical component in the field of wavefront sensing today. Not

only has this device been utilized in the field of astronomy, but it has also been adapted for

sensing applications in microscopy [13], ophthalmology [7] and in vivo imaging of biological

tissue [23]. It is worth exploring the function of the SHS in detail as it provides a baseline

for understanding wavefront sensing in general and LRT in particular.

The basic components of a SHS consist of a fixed lenslet array and an imaging camera,

typically a CCD, as shown in Figure 8. The fixed lenslet array is an evenly spaced grid of

micro-lenses each of which subsamples the incident wavefront and focuses it onto the detector

surface. In the case of a non-aberrated wavefront the centroid of each focused spot will be

located at the centre of the subaperture as shown in Figure 9. A spot pattern is created

that forms a regular grid on the detector surface. The wavefront is then reconstructed from

the image of the spots via a least-squares fit or similar method. Figure 10 illustrates an

aberrated wavefront in which the spot locations will be offset from the lenslet centres by an

amount proportional to the local wavefront gradient across the subaperture The wavefront

gradient over the ith subaperture ∂Wi(x, y) is related to the local ∆xi and ∆yi displacements

by

∂Wi(x, y)

∂x
=

∆xi
f

∂Wi(x, y)

∂y
=

∆yi
f

(2.1)

where f is the focal length of the lenslet. In a similar manner to the non-aberrated case, the

aberrated wavefront is reconstructed from the image of spot locations via a least-squares fit.
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Wavefront reconstruction is discussed in detail in Section 2.3.

Figure 9: Functional illustration of a Shack-Hartmann wavefront sensor for an non-aberrated
wavefront. 1. The non-aberrated wavefront is incident upon the lenslet array. 2. Each subaperture
of the lenslet array focuses a portion of the wavefront onto the surface of a CCD (or similar)
detector. 3. Due to the absence of aberrations the spot formed by each lenslet coincides with the
centre location of the lenslet. 4. This forms a spot pattern from which the measured wavefront
may be reconstructed.
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Figure 10: Functional illustration of a Shack-Hartmann wavefront sensor for an aberrated wave-
front. 1. The aberrated wavefront is incident upon the lenslet array. 2. Each subaperture of the
lenslet array focuses a portion of the wavefront onto the surface of a CCD (or similar) detector. 3.
The spot locations are offset from the centre of each lenslet by an amount proportional to the slope
of the wavefront at that location. 4. This forms a spot pattern from which the measured wavefront
may be reconstructed.

SHSs have become ubiquitous for wavefront sensing with many versions available com-

mercially [56]. They are often bundled with software for wavefront phase reconstruction or

even as a complete adaptive optics kit. For example, the high resolution (1.3 Megapixels)

SHS from [56] has a maximum frame rate of 15 hertz while the high-frame rate (450 hertz)

version [55] offers a small frame (180× 180 pixels) and only for onboard camera processing
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of up to 5 Zernike modes. Though SHSs have general usage in the wavefront sensing field

there are several drawbacks and/or limitations that justify exploring other modalities.

First, SHSs obtain all of the imaged spots in parallel. While this is desirable in terms

of speed, it requires that the image be segmented (to produce separate images of all of

the individual spots) before the spot centroids may be calculated. This is not only time-

consuming but can lead to errors if, for instance, a large aberration causes a spot to be

displaced from one lenslet area to the adjacent one as shown in Figure 11. This is especially

troublesome for automated wavefront sensing systems which are unable to determine which

spot belongs to the correct grid location. Errors such as this do not occur with LRT since

the spots are imaged one at a time, serially. As such, there can be no ambiguity as to which

spot belongs to a given scan location no matter how large the aberration.

(a) Each spot is within the lenslet grid. (b) Large aberrations can cause gridding errors.

Figure 11: In (a) a non-aberrated (or slightly aberrated) wavefront produces a spot pattern where
each spot is located at the centre of its respective lenslet grid. In (b) large aberrations are present
and a spot can move outside the grid associated with its lenslet area. Here, the top left spot
(indicated by the arrow) has moved into the adjacent lenslet space, causing an error.

Another drawback of SHS is that the available spot patterns are fixed by the lenslet array

such that neither the pattern nor the number of measurement locations may be changed.

Modalities such as LRT are more flexible in this respect, with the number and pattern of

measurement locations being user selectable.

2.3 The Zonal and Modal Methods

Once a given wavefront has been measured, the task turns to reconstructing it in a form

that can be represented mathematically. As noted in Section 2.2 a SHS outputs an intensity

image of spots that correspond to the local wavefront gradient over the lenslet subaperture.
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(a) (b) (c) (d)

nodes

Figure 12: The zonal method of wavefront reconstruction. The original wavefront (a) is sampled
by lenslet array (b). For each subaperture a local tilt is measured (c). The OPD for each subaperture
is calculated via a least-squares, or similar method, resulting in the reconstructed wavefront (d).

Two common methods for converting the measured gradients into the original wavefront are

the zonal method and the modal method.

The zonal method involves dividing the wavefront into N small subsections and a local

tilt or optical path difference (OPD) is determined for each subsection. As N → ∞ the

wavefront may be reconstructed fully, though in practice N is limited to some finite value

that depends on the physical setup of the sensor. Figure 12 illustrated the concept of the

zonal method. The original wavefront (a) is sampled by a lenslet array (b). In practice the

intensity image is then captured by a CCD camera or similar device and the tilt for each

subaperture is obtained using the methods discussed in Section 2.2. After each local tilt is

obtained (c) the OPD to each node is calculated via a least-squares or similar method, and

the reconstructed wavefront is obtained (d). In this way, the final wavefront reconstruction

is represented by an array of discrete OPD values, one for each node.

Another option for reconstructing a measured wavefront is the modal method. In contrast

to the zonal approach, this method represents the measured wavefront as a sum of 2D-

surfaces. This analytic approach has several advantages over the zonal approach in that

it
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• provides infinite resolution of the reconstructed wavefront due to it being represented

by continuous functions, opposed to discretely, as in the zonal approach, and

• may represent the wavefront as a sum of intuitive components such as tilt, astigmatism

and defocus.

Though there are many possible basis sets that one may choose to represent a given

wavefront (e.g. Fourier, Seidel) the one generally used in optics are known as Zernike modes

and will be discussed at length in Section 2.4.

2.4 Zernike modes as wavefront descriptors

If the modal method of wavefront reconstruction is utilized, it still remains to choose an

appropriate polynomial basis set. There are several characteristics that make a given basis

desirable:

1. The set should form an orthonormal basis.

2. The set should capture aberrations common to optical systems.

3. The set should be defined over a circular pupil.

First, it is desirable to have the basis set be orthonormal so that the addition or removal

of terms do not effect the remaining terms. One would not wish to have the magnitude

of the 3rd coefficient change because the expansion was made to include 20 terms instead

of 10. Secondly, there are aberrations that are common to most optical systems such as

defocus, astigmatism, coma, etc. It is highly desirable that each of these aberrations be

represented uniquely in the basis set. These types of aberrations are discussed in more detail

in Section 2.5. Lastly, most optical systems utilize circular beam profiles and it is desirable

that the basis set captures this inherently.

Zernike polynomials are often chosen as a basis set for representing optical wavefronts

as they meet all of the above criteria. Each Zernike term, often referred to as a mode, is

orthogonal to the other modes, and defined over a normalized circular pupil. Generally,

Zernike modes are defined over the polar coordinates (r, θ) and the ith Zernike mode is

defined as
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Zmn(ρ, θ) =


Rmn(ρ) m = 0

Rmn(ρ) cos(mθ) m > 0

Rmn(ρ) sin(mθ) m < 0

(2.2)

where m and n for the ith Zernike mode are defined in [36] as shown in Table 1). Rmn(ρ)

is referred to as the radial polynomial and is defined as

Rmn(ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!

k!(n+m
2
− k)!(n−m

2
− k)!

ρn−2k (2.3)

The sin(mθ) and cos(mθ) terms are referred to as the azimuthal components where m is

the azimuthal frequency. Table 1 lists the first 15 Zernike modes including the normalized

polynomial and the common name. The first ten Zernike modes (normalised over a pupil

radius of 1) are shown in Figure 13. Each mode, when normalised has a maximum of +1

(red) and a minimum of −1 (blue).
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piston
i = 0

y-tilt
i = 1

x-tilt
i = 2

y-astigmatism
i = 3

x-astigmatism
i = 5

defocus
i = 4

y-trefoil
i = 6

x-trefoil
i = 9

y-coma
i = 7

x-coma
i = 8

Figure 13: The first 10 Zernike modes.
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i n m Zernike Polynomial Name

0 0 0 1 piston

1 1 −1 2ρ sin θ y-tilt

2 1 1 2ρ cos θ x-tilt

3 2 −2
√

6ρ2 sin 2θ y-astigmatism

4 2 0
√

3 (2ρ2 − 1) defocus

5 2 2
√

6ρ2 cos 2θ x-astigmatism

6 3 −3
√

8ρ3 sin 3θ y-trefoil

7 3 −1
√

8 (3ρ3 − 2ρ) sin θ y-coma

8 3 1
√

8 (3ρ3 − 2ρ) cos θ x-coma

9 3 3
√

8ρ3 cos 3θ x-trefoil

10 4 −4
√

10ρ4 sin 4θ y-quadrafoil

11 4 −2
√

10 (4ρ4 − 3ρ2) sin 2θ y-secondary astigmatism

12 4 0
√

5 (6ρ4 − 6ρ2 + 1) spherical aberration

13 4 2
√

10 (4ρ4 − 3ρ2) cos 2θ x-secondary astigmatism

14 4 4
√

10ρ4 cos 4θ x-quadrafoil

Table 1: The first 14 Zernike polynomials and their common names.

2.5 Optical Aberrations

A major benefit of choosing the Zernike polynomials as a basis set is that the lower order

modes correspond to common optical aberrations such as tilt, defocus, astigmatism and

spherical. In this section, several of these aberrations will be discussed in detail and related

to their physical causes in optical systems.
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2.5.1 Tilt

Tilt is caused when there is a misalignment between the object and the optical axis. Figure 14

shows an example of tilt. Optical axis A is denoted by the solid black line to which object

O is perpendicular. Lens L is tilted with respect to A by approximately 3◦ forming a tilted

optical axis At indicated by the dashed lines. The blue and red rays originate from the

bottom and top of object O, respectively. Image I is tilted with respect to the original axis

A.

A
At

O

I

L
Figure 14: Tilt aberration. Optical axis At (dashed line) is tilted with respect to axis A (solid
line) causing image I to be tilted with respect to object O.

In terms of Zernike modes, tilt is broken out into x and y modes with indexes i = 1, 2.

The polynomials for x and y are 2ρ sin θ and 2ρ cos θ respectively as shown in Table 1.

2.5.2 Defocus

Defocus is a familiar aberration in which an image is out of focus. This occurs when the

image plane is not coincident with the plane of best focus, typically caused by a translation

along the optical axis. The Zernike polynomial
√

3 (2ρ2 − 1) models the defocus aberration

as shown in Table 1.
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2.5.3 Coma

Coma is a variation of focus with field angle off-axis. Thus, point objects near the edge of

the entrance pupil will obtain a ’comet-like’ tail when an image is formed. Figure 15 shows a

ray tracing of the coma aberration. Rays near the edge of the pupil are spread out whereas

rays near the centre of the pupil are not. The bottom of the figure shows a point source

and its image, with the comet tail aberration depicted. The coma aberration is modelled

by Zernike modes i = 7 and 8 with y-coma polynomial being
√

8 (3ρ3 − 2ρ) sin θ and the

x-coma polynomial being
√

8 (3ρ3 − 2ρ) cos θ.

O

I

L

Figure 15: Coma aberration. Point source object O obtains a comet-like tail in image I due to
coma aberration from lens L. The top part of the image illustrates the ray tracing while a depiction
of the point source and image is shown below.

2.5.4 Astigmatism

Figure 16 shows a lens that exhibits astigmatism. Rays originating from point source O on

the optical axis come to two different focal points fx and fy in the orthogonal directions. This

can be due to defects in the lens or other effects such as mismatches in system alignment, etc.

In the case of LRT astigmatism is introduced into the system by the spatial separation of

the x and y galvo-scanner mirrors. Astigmatism can be purposely introduced in to a system

(or compensated for) by utilising a cylindrical lens.
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fx fy

x

y
O

Figure 16: Astigmatism aberration. Rays originating from point source O are brought to a
different focus in the x and y directions. Focal point fx is depicted with blue rays while focal point
fy is depicted with the red rays.

2.5.5 Spherical

The spherical aberration due to a spherically shaped lens or mirror which causes rays incident

near the edge of the pupil to be focused to a different location on the optical axis than rays

incident near the centre of the pupil. This can be corrected with the use of parabolic lenses

and mirrors but due to the ease of manufacturing spherical optics, this aberration is still

commonly observed. Figure 17 shows rays emanating from a point source and being focused

to differing locations due to a lens with spherical aberration. Zernike mode i = 12 with

polynomial
√

5 (6ρ4 − 6ρ2 + 1) models the spherical aberration.
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Figure 17: Spherical aberration. Spherical shape of the optic causes the focal point to differ for
rays entering near the edge of the pupil opposed to those entering near the centre.

2.6 Conclusion

This chapter discussed the basic principles of wavefront sensing and provided the founda-

tional material needed for an in-depth look at coherence-gated wavefront sensing. The SHS

was used as a starting point, from which the general operating principles of wavefront sens-

ing were presented. Next, the zonal and modal method of wavefront recovery were touched

on, with emphasis given to the modal method, as that is the technique used in the CGLRT

instrument. This led into a discussion of Zernike modes as wavefront descriptors and finally,

how those modes relate to common physical aberrations in optical systems. Next, Chapter 3

will show how the combination of low-coherence interferometry (LCI) and basic wavefront

sensing allows for the realisation of depth-resolved wavefront sensing. First, a brief discus-

sion of interferometry and the common interferometer configurations are presented. Then,

the major literature on coherence-gated wavefront sensing is discussed including its origins

in biological imaging. Again, the focus on SHS is appropriate, as the major literature deals

exclusively with this modality of wavefront sensing. After this survey of the literature and

principles of coherence-gated wavefront sensing, the discussion will turn to topic of the laser

ray tracing wavefront sensor in the next chapter.
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3 Coherence Gated Wavefront Sensing

3.1 Introduction to Coherence Gated Wavefront Sensing

The concept of coherence gating in microscopy and wavefront sensing derives from the prin-

ciples of LCI, phase-shifting interferometry (PSI) [25], and OCT [20]. In each case, an

interferometer (typically a Michelson or Mach-Zehnder), is combined with a standard wave-

front sensor. The previous chapter focused on the basics of wavefront sensing, whereas this

chapter will begin with a review of the basic techniques of interferometry. From there the dis-

cussion will continue with a review of the pertinent literature on coherence-gated wavefront

sensing (CGWFS).

Perhaps the most well known interferometer is the Michelson interferometer, made fa-

mous by its use in the Michelson-Morley experiment which provided evidence for the non-

existence of the aether [27]. The basic setup of the interferometer is shown in Figure 18. In

it an optical source, either monochromatic or broadband, delivers a collimated beam to a

beam splitter BS which splits the beam into a reference and an object arm (blue and red,

respectively in Figure 18). These beams reflect off of the reference mirror RM and the object

mirror OM and are recombined by BS. The recombined beam is incident upon the detector

where interference fringes may be measured. The output of the detector may be digitized

and processed by a computer.

Another common interferometer configuration, known as a Mach-Zehnder is shown in

Figure 19. In it, optical source OS launches a beam (purple) to beam splitter BS1. This

splits the beam into the two arms of the interferometer, shown as red and blue. Mirrors

M1 and M2 direct the beams to beam splitter BS2 where they are recombined. Half of the

light is incident upon detector DET and the other half is absorbed by beam block BLK. A

modified form of the Mach-Zehnder interferometer is utilised in the realization of the CGLRT

instrument.

An interferometer with a monochromatic coherent source will exhibit and interference

pattern that repeats over 2π intervals as the path length of the interferometer (usually in

the reference arm) is modulated. The coherence length of an optical source is defined as

the distance over which the temporal coherence degrades by a given amount, depending on

the application. For a Michelson interferometer and optical path difference of one coherence

length will cause the fringe visibility to drop by 37% [1]. In the case of a monochromatic

source the coherence length is typically quite long and may range from 10s of cm to 100m

or more depending on the type.
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OS BS

RM

OM

DET

reference arm

object arm

Figure 18: A Michelson interferometer. Optical source OS launches a beam (purple) to beam
splitter BS. BS splits the beam into the reference (blue) and object (red) arms of the interferometer.
The reference mirror RM and object mirror OM reflect the beams back to BS where the beam are
recombined and sent to detector DET. The signal is amplified, digitized, etc., before being read
into a computer for post processing.
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BLK

M1

DET

OS BS1

M2

BS2

Figure 19: A Mach-Zehnder interferometer. Optical source OS launches a beam (purple) to beam
splitter BS1. This splits the beam into the two arms of the interferometer, shown as red and blue.
Mirrors M1 and M2 direct the beams to beam splitter BS2 where they are recombined. Half of the
light is incident upon detector DET and the other half is absorbed by beam block BLK. BLK may
be replaced by an alternate detector if desired.
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If, instead, the interferometer is fed by a broad-band source, significant interference will

only occur where the optical path difference is within the coherence length of the source.

The coherence length lc of a broad band source is defined as:

lc =
4 ln 2

πn

λ20
∆λ

(3.1)

where λ0 is the centre frequency of the broad band source, ∆λ is the full-width half-

maximum (FWHM) bandwidth, and n is the refractive index.

For a low-coherence source with a central wavelength λ = 675 nm lc is on the order of

tens of microns and, clearly, as the bandwidth of the source increases the coherence length

decreases. It is this very property of low-coherence interferometry, which naturally selects

a very limited OPD, that allows selection of light returned solely from within the coherence

gate. For example, coherence gating can be used to enhance axial resolution in en face

microscopic imaging [28] by eliminating spurious light from outside the focal plane. For

WFS, coherence gating may be employed to select only the light being returned from the

layer of interest in a multilayer sample, allowing wavefront correction to ignore aberrations

from layers beyond the one of interest [9]. Coherence gated WFS has been employed in

both strongly scattering biological samples [9] and in two-photon microscopy for imaging of

biological tissue [49].

3.2 CGWFS in Biological Samples

A general approach to coherence-gated WFS in scattering biological tissues is described in

the paper, “Coherence-gated wave-front sensing in strongly scattering samples” by Feier-

abend, Rückel and Denk [9]. This paper describes an experimental setup with the intention

of verifying the feasibility of a CGWFS utilising a low-coherence interferometer. The authors

note the desire to perform wavefront sensing, similar to that performed by astronomers, but

in strongly scattering biological samples. In astronomy, a guide star is often used to sense

wavefront distortions in the atmosphere, but in biological samples no such option exists out-

side of fluorescence which can be damaging to tissues. They demonstrate that light returned

only from the focal region of a scattering sample may be selected by coherence-gating which,

instead of utilising a guide-star, matches time-of-flight between photons returned from the

sample (object arm) and photons in the reference arm of the interferometer.

Coherence-gating is achieved via the techniques of phase shifting interferometry [4, 40],

which is able to extract phase information from a series of interferograms. The four-step
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PSI algorithm, as described by Malacara [25] was used to compute the complex amplitude

from a quadruplet of images (I1, I2, I3, I4). For each image, the reference arm path length is

shifted by a quarter wave: 0, λ/4, 2λ/4 and 3λ/4. The complex amplitude A may then be

calculated from the four interferograms:

A = (I2 − I0) + i (I3 − I1) . (3.2)

This may also be expressed in terms of the intensity only:

ID =

√
(I2 − I0)2 + (I3 − I1)2, (3.3)

where ID is the intensity profile of the image.

Interestingly, the authors did not utilise a physical SHS but instead processed the four

interferograms with a virtual Shack-Hartmann sensor (vSHS). The vSHS outputs a spot

pattern, the same as one would expect from a physical Shack-Hartmann sensor, which may

then be analyzed in the typical fashion via a least squares fit to Zernike polynomials. The

vSHS is discussed in more detail in 3.3.

Next, the authors introduced known aberrations into the system and verified that CG-

WFS behaved as expected. First, they introduced defocus by changing the reference-arm

length. As the coherence-gate position changes relative to the focus, defocus is increased. As

expected, the defocus term dominates while all other Zernike coefficients remain small and

unchanged. In a second test, a glass coverslip (BK7, 180 µm thick) was placed between the

sample and objective and tilted by ∼15◦. This introduced astigmatism, coma, and spherical

aberrations. The authors once again shifted the CG position (in the presence of the cover-

slip) and verified that only the defocus term varied. The authors conclude that CGWFS is

able to successfully utilise backscattered light, isolated via coherence-gating, to reconstruct

a measured wavefront while rejecting light from outside the coherence-gate. Another impor-

tant paper, by the same authors [47], discusses the functioning of the vSHS, which will be

treated in the following section.

3.3 Virtual Shack-Hartmann WFS

In [47] the authors discuss the implementation of a vSHS with an emphasis on noise perfor-

mance in comparison to a physical SHS. They note that most applications of AO for confocal
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microscopy require monitoring fluorescing light from the biological sample (similar in func-

tion to the ‘guide star’ in astronomical AO). This approach can be problematic though, as

the specimen must be stained, and there is often accompanying damage to the tissue from

photo-bleaching. As an alternative to fluorescence, light that is back-scattered from the

focal plane of the confocal microscope may be utilised for wavefont sensing. The critical

issue though, is that light from outside the focal plane must be rejected by the wavefront

sensing system. If this were not the case, the AO system would be attempting to correct for

distortions in wavefronts which were not being imaged. By employing coherence-gating, only

the light back-scattered from the focal-plane of the confocal imaging system may be selected.

This ensures that the AO system is only responding to wavefronts that are currently being

imaged.

As in a physical SHS the vSHS divides the aperture up into m ×m subapertures, but

numerically instead of with a lenslet array. A discrete FFT is performed on A (from Equa-

tion 3.2) for each subaperture. This produces a diffraction pattern for each subaperture

analogous to that formed by the lenslet of a physical SHS. The centroid of each diffraction

pattern may then be calculated, slopes determined, and the wavefront reconstructed. The

authors used a standard least-squares fitting method to reconstruct the wavefront with 28

Zernike modes.

Though the vSHS is fully parallel and does not require hardware it does have drawbacks,

specifically, sensitivity to photon and speckle noise. In [47] they note that below photon

numbers (returned from the sample) of approximately 104 the wavefront error was very

large, on the order of one to three microns for an input wavefront with deviation of 0.1 µm.

This can be dealt with, partially, by increasing the diameter of the individual lenslets, but

at the cost of sacrificing the ability to calculate higher-order Zernike modes. Also, according

to [47] and [9] this method will fail in the presence of speckle noise. In [9] the authors were

required to take 600 image quadruplets (for the four-step algorithm) at 24 different positions

(shifted by 0.1 µm) to reduce the speckle noise. The authors do not provide a quantitative

value for the reduction. In terms of processing time neither [47] nor [9] provide any discussion

regarding the computational time required to implement the vSHS wavefront recovery.

3.4 Coherence-Gated Shack-Hartmann WFS

Thus far, the motivation for utilising CGWFS has been to perform wavefront sensing on

strongly scattering biological samples. While this is true other benefits exist such as rejecting

stray reflections from the optical imaging systems themselves. In microscopy systems, for
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example, there may be many sources of stray reflections including multifaceted microscope

objectives, multiple reflections off of microscope slides, and for retinal imagining the eye lens

and cornea. This also means that CGWFS systems can more easily cope with complicated

optical imaging systems.

Ideally, it is desirable for CGWFS systems to operate at a high-speed so that they may

correct for distortions in real-time imaging systems such as high-speed OCT. To achieve

this it is preferable for the wavefront sensing system to minimize the calculations necessary

to reconstruct the wavefront. For this reason, it is prudent to explore hardware based

alternatives to the mathematically complex vSHS. By transferring the virtual lenslet array

calculation to a hardware based SHS with a physical lenslet array one may realise a CGSHS.

This does away with the need to:

1. Partition the image into subapertures, forming the virtual lenslet array.

2. Calculate the Fourier transform over each lenslet (including zero-padding).

The implementation of CGSHS is first explored by Tuohy and Podoleanu [59]. The

authors first discuss some of the limitations of current (non-coherence-gated) SHSs, including

the inability to differentiate aberrations from differing layers of a multi-layer specimen, as

discussed above, and sensitivity to stray reflections.

The physical implementation of a CGSHS does away with a majority of the calculations

above, trading off computational complexity for optical hardware complexity. The system

is realised in the form of a modified Michelson interferometer. The experimental setup is

shown in Figure 20. The interferometer is fed by a broad band optical source OS. Light from

the source is collimated by lens L1. Beam splitter BS1 splits the beam into reference and

object arms. The object beam traverses beam splitter BS2, lenses L2 and L3 and is incident

upon deformable mirror DM which is used to introduce aberrations into the system. Lenses

L2 and L3 were utilised to introduce strong stray reflections into the system. The reflected

beam is picked off by splitter BS2 where it encounters the micor-lenslet array MLA, forming

a grid of pencil beams. In the reference arm the beam is incident upon mirror RM that can

be modulated by a piezo-electric transducer PZT. The reference beam is recombined with

the object arm pencil beams via steering mirror M1 and splitter BS3. L4 and L5 form a

telescope that image the combined beams onto the CCD camera.
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CCDL4

L3

MLA
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BS2
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PZT
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M1

Figure 20: The experimental set up used in [59]. OS: Optical source. BS1-BS3: Beam splitters.
L1: 10x microscope objective L2-L5 achromatic doublet lenses. DM: Deformable mirror. RM:
Reference mirror. PZT: Piezo-electric transducer. CCD: Camera. MLA: Micro-lens array. M1:
mirror.

For the time-domain implementation the reference mirror RM is mounted on a piezo-

electric actuator which is used to translate the mirror a distance equal to the central wave-

length λ of the source. As discussed in Section 3.2 this translation is implemented such

that four images, each with a phase shift of λ/4 is obtained. The piezo control voltage is

synchronized via a PC to the CCD acquisition signal so that images are obtained at the

appropriate phase offset. Using the principles of PSI [25] the interferogram is obtained from

Equation 3.3.
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In discussing results, the authors first look at the rejection of stray light by comparing

spot patterns of CG and non-CG SHS. In the non-CG case, the reference beam of the

interferometer was blocked, reducing the operation to that of a normal SHS. In this case,

there are many stray reflections in the image. When the CG is applied and the image

generated (via the method discussed in Section 3.2) the stray reflections have been removed

and the spot pattern is clearly improved. In the case of both unaberrated (DM is flat) and

aberrated wavefronts the spot pattern is cleaner, yet retains the spot deviations one would

expect. The authors also note that the overall signal level is enhanced in the CG case. This

is due to the combination of the relatively weak signal from the object arm being combined

with the relatively strong signal from the reference arm.

It is important to note, with regards to CGLRT that the setup above did not utilise a

multi-layer object. The use of deformable mirror DM to introduce aberrations was useful in

demonstrating the functionality of the system but only for a single-layer target. It was left to

the next paper, “Demonstration of real-time depth resolved Shack-Hartmann measurements”

by Wang and Podoleanu [61], to demonstrate depth-resolved wavefront sensing for a multi-

layer object.

In [61] the authors demonstrate real-time operation of a time-domain CGSHS. In this

paper Shack-Harmtann spots are obtained from a multi-layer sample. This setup was used to

show that individual wavefronts returned from a multi-layer sample could be resolved while

also rejecting stray reflections from system optics.

The setup for the system is shown in Figure 21. In it, a Super Luminescent Diode (SLD)

source feeds the LCI. The beam is collimated and split via BS1 into reference and object

arms. In the object arm the multi-layer sample OM is interrogated by the beam and sent

via splitter BS3 to micro-lenslet array MLA. Here, the pencil beams are overlaid on the

reference beam via splitter BS4. Lenses L3 and L4 form a telescope which images the spots

on the sensor (CMOS camera). In the reference arm mirror RM is mounted to piezo PZT

to provide path length modulation.
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Figure 21: The experimental set up used in [61]. SLD: Super luminescent diode. BS1-BS4: Beam
splitters. L1-L4 achromatic doublet lenses. OM: Object mirror. RM: Reference mirror. PZT:
Piezo-electric transducer. CCD: Camera. MLA: Micro-lens array. Inset: The multi-layer object
consists of two microscope slides mounted in front of the object mirror OM. This forms surfaces
P1 through P5 as shown.

To verify the functionality of the CGSHS a multi-layer sample was constructed from two

microscope slides and a mirror as shown in the subset of Figure 21. The two microscope slides,

combined with the mirror, may be interrogated in depth. Each glass/air boundary (P1 - P4)

creates a reflective surface from which a wavefront will be returned. With the object mirror

OM providing the final surface P5. Spot images were obtained for P1 - P5, both with and

without CG. The first microscope slide is intentionally tilted by a small amount to introduce

a low-order aberration to the object. In each case the reference mirror was translated to the

OPD = 0 position for the associated surface. For the non-CG cases, each image was clearly

dominated by the strong reflection from the object mirror with small contributions from

P1 - P4. In contrast, in the CG version each spot image contains only contributions from

the associated OPD = 0 surface, with complete suppression of the dominant OM signal.
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Finally, Zernike polynomials were used to evaluate each set of CG spots. As expected

the tilt in y term dominates due to tilted slide. Small amounts of defocus were also present

due to a mismatch of the focal point and the coherence gate location. In this way the authors

demonstrate a functioning CGSHS capable of measuring wavefronts from a multi-layer object

while rejecting strong reflections from other layers.

3.5 Conclusion

This chapter has covered the basic principles and literature regarding coherence-gated wave-

front sensing. The principle of coherence-gating allows for the selection, in depth, of light

returned from a multi-layer object by exploiting the short coherence-length of a broad-band

source. In each case, the use of an interferometer led to the realisation of a depth-resolved

wavefront sensor. In [9], the motivation for CGWFS is found in the need to add AO to sys-

tems which image strongly-scattering biological tissue. By using coherence-gating, the use

of damaging fluorescence techniques may be avoided. The use of a virtual Shack-Hartmann

WFS is discussed in [47]. While this technique was innovative, it is numerically complex.

This led to the development of hardware based approaches to CGWFS, focusing on the

marriage of a low-coherence interferometer with a standard Shack-Hartmann WFS. In [59],

coherence-gating is employed to remove stray reflections from the system and a single-layer

target is utilised. In [61], the system is expanded by use of a Mach-Zehnder configuration

and coherence-gating is employed to resolve wavefronts from a multi-layer target.

In many ways, the systems discussed in this chapter illuminate the motivation for explor-

ing coherence-gated laser-ray tracing. CGLRT should be able to employ coherence-gating to

remove stray reflections from the system. It should also be able to resolve wavefronts from

single-layer and multi-layer targets. With this in mind the upcoming chapter discusses the

initial implementation of the CGLRT system. After a brief discussion of the basic principles

of laser ray tracing, the implementation of both single-layer target and multi-layer target

versions of the system are discussed. For the first time, results are shown which demonstrate

the ability of LRT to perform depth-resolved wavefront sensing for a multi-layer object. It

is important to note the distinction, however, between this initial system and the final in-

strument discussed in Chapter 6. All of the data in Chapter 4 was processed using Labview

and not on an embedded system. It will be left to Chapter 5 to discuss the embedded

system architecture used to perform the measurements in real-time. The combined CGLRT

instrument will be discussed in the final chapter.
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4 Laser Ray Tracing Wavefront Sensor

4.1 An Introduction to Laser Ray Tracing

While the Shack-Hartmann design is perhaps the most widely known WFS other method-

ologies do exist. One such methodology, known as LRT, [35] is a wavefront sensing modality

that more closely resembles the process of mathematical ray-tracing typically used to design

optical systems. LRT functions by interrogating a target sequentially with a thin pencil

beam. The beam is articulated by a scanner (usually an x-y galvo, gimbal mounted mirror,

acousto-optic modulator, or similar device) and the location of the returned beam is sensed

via a position sensitive detector, CCD camera, or similar device. In the absence of aber-

rations the scanning beam will return to its nominal position on the detector, but in the

presence of aberrations the beam will be shifted by an amount proportional to the gradient

of the aberration at the point of interrogation. By scanning many points on the surface of

interest a spot pattern similar to that of a SHS is produced. LRT devices are commercially

available and are used in ophthalmic applications such laser ablative surgery and corneal

tomography [57]. LRT has several benefits over the more common SHS including:

• A user definable scanning pattern, in contrast to a SHS, in which it is fixed due to the

lenslet array.

• The physical implementation is a closer approximation to geometric optics methods

typically used to design optical systems making the system easier to conceptualise.

• Serialized data output which is well suited for embedded systems processing using a

Field Programmable Gate Array (FPGA).

• No need for segmentation and indexing tasks associated with SHS, which are time

intensive and prone to error if, for instance, a spot moves outside its allotted segment

due to large aberrations.

LRT also exhibits several disadvantages when compared to SHS:

• The serialised nature of the scanning is slower than the parallel acquisition of SHS due

to the time needed to move the scanning beam mechanically.

• The need for scanning makes the system more mechanically complex by adding the

need for a beam actuator such as a galvo-scanning mirror.
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In its basic form LRT exhibits a large depth of field which makes it incapable of dif-

ferentiating wavefronts returned from an object with multiple layers. This is important in

imaging modalities such as Optical Coherence Tomography (OCT) that produce 3D vol-

umetric images of multi-layer targets, for example, the human retina. Additionally, the

large depth of field means that LRT is susceptible to stray reflections in the optical system.

These limitations can be overcome by incorporating interferometric coherence-gating into a

standard LRT which will be discussed in detail in Section 4.3 and Chapter 6.

LRT comes in two basic forms: single-pass and double-pass, depending on how many

times the interrogating beam passes through the aberrating optics. In order to understand

the basic principles of LRT let the discussion first examine the single-pass setup.

4.1.1 Single-pass LRT

GM

OS

L1 L2

DETA

Figure 22: A basic single-pass LRT. OS: Optical Source, typically a laser or super-luminescent
diode. GM: Galvanometer-Scanning Mirror. L1 & L2: Lenses of equal but arbitrary focal length.
A: Aberrating plate, in this example, with zero abberations. DET: The detector, which may consist
of a position sensitive detector (PSD), quad-cell, charge-coupled device (CCD) camera, or similar
device. Three different field angles are shown for reference.

Figure 22 illustrates a simplified single-pass LRT with no aberrations present. A thin

(≈ 500 µm diameter) collimated laser beam is launched from the optical source OS. This may

be monochromatic, in the case of non-coherence gated LRT, or broadband, in the coherence-

gated case. The beam is incident upon a scanning mirror GM which may be a galvonometer

x − y mirror, gimble mounted mirror, acousto-optic modulator (AOM), or the like (galvo-

mirror shown in Figure 22). For reference, three beams are shown (green, blue and red),

which represent the beam direction for three different scan locations of the mirror. The
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scanner is at the focal point of lens L1, which collimates the articulated beams. In this

example, the optic being interrogated is free of aberrations so the beam passes through with

no change to its propagation direction. Lens L2 focuses the beam onto the detector DET

which senses the beam position. In the aberration-free case the beam position on the surface

of DET will remain constant as the various locations are scanned. Contrast this with the

case shown in Figure 23 where the optic A is aberrated.

GM

OS

L1 L2

DETA

Figure 23: A basic single-pass LRT with aberrations. OS: Optical Source, typically a laser or
super-luminescent diode. GM: Galvanometer-Scanning Mirror. L1 & L2: Lenses of equal but
arbitrary focal length. A: Aberrating plate, in this example, imparting abberations to the system.
DET: The detector, which may consist of a PSD, quad-cell, CCD camera, or similar device. Three
beams are shown for reference.

In the aberrated case the parallel beams exiting lens L1 are deflected from their nominal

path by the local surface figure of A. Hence, when each beam is focused onto DET by lens L2,

the location on the detector surface is offset by an amount proportional to the local wavefront

aberration of A. In this way, lens L2 and DET act, in essence, as a single subaperature of a

SHS. Once the complete set of beam offsets has been measured, the process of reconstructing

the wavefront is analogous to the SHS case.

Molebny, et al., in 1997 [31], laid out an early iteration of the LRT concept which they

dubbed retina ray-tracing. In this paper, the authors describe the retina ray-tracing device,

which is similar to the double-pass LRT in Figure 26. For scanning, an AOM was utilised

(opposed to a galvo-scanning mirror) which provided the system with a frame rate under 10

ms for a 65 point scan. For each scan position an image of the laser spot on the retina is

projected onto a segmented PSD (quad-cell) which is discussed in detail in Section 4.2. The

position of the laser spot on the quad-cell will be shifted away from the nominal location

due to aberrations in the cornea. The magnitude of the shifts in the laser spot position
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mayb be used to reconstruct the aberration of the eye in terms of Zernike polynomials. In

Section 3 of the paper the authors show that an imperfect eye may be modelled as a perfect

eye combined with a distorted wavefront W . In this way, the standard wavefront analysis

and reconstruction techniques (Section 2.4) may be used. Finally, the authors show that

the x and y displacement of the laser spot on the quad-cell relates to the gradients of W by

Equations 2.1.

In a follow up paper “Principles of Ray Tracing Aberrometry” [32], the same authors

describe an LRT instrument developed at the Institute of Biomedical Engineering at Kiev

with testing performed at the Vardinoyannion Eye Institute of Crete. This technology was

eventually commercialized and sold as the iTrace by the company Tracey [57]. A detailed di-

agram of the instrument was not given, only a brief description. They describe an instrument

similar to that in [31] where an acousto-optic modulator (AOM) is used to deflect a 0.3 mm

diameter scanning beam sourced from a 10 mW diode laser (λ = 650 nm). The deflected

beam interrogates the eye through a beam splitter and is kept parallel to the optical axis

of the eye using a lens. A PSD is used to detect the traverse position of the back-scattered

light returned from the eye. The final instrument is stated as having a CCD camera and

a fixation target to aid in aligning the eye with the wavefront sensing system. It is able to

perform scans of 60 to 400 points in 10 to 20 ms. Reconstruction of the measured aberration

is done in post processing with Zernike modes. It should be noted that the purpose of this

instrument is to measure aberrations of the human eye for use in laser ablative surgery. It

is not functioning as a wavefront sensor for the purposes of AO.

Another set of papers, considered to be the ‘classic’ LRT publications, are by Navarro and

Moreno-Barriuso. This first of these, published in 1999 [35], describes a simple, single-pass,

implementation of an LRT as shown in Figure 22. This paper does not focus on measuring

the aberrations of the eye, but instead compares the results of LRT with a SHS integrated

into the same setup. The LRT setup used in this paper is shown in Figure 24. The SHS setup

is shown in Figure 25. For the LRT, a He-Ne laser (OS) with a beam diameter of ≈ 0.6mm

is sent to XY scanner GM. This directs the beam (3 possible deflection angles shown) to

high-quality collimating lens L1 and aberrating plate A. Lens L2 focuses the beam onto the

surface of a CCD camera. For the SHS, optical source OS is sent through a spatial filter and

pinhole (not shown). The beam is collimated by len L1 and sent through aberrating plate

A. Lenses L2 and L3 form an image of L1’s pupil plane on the micro-lens array MLA. The

micro-lens array is composed of 91 microlenses, each with a diameter of 0.5 mm and focal

length f=50 mm. The spots formed by MLA are imaged onto the CCD camera by lenses L4

and L5.
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The LRT was programmed to deliver a scan pattern identical to that produced by the

MLA in the SHS setup, so the comparison was ideal. To obtain a reference wavefront, plate

A was removed from the setup. Then A can be placed in the setup and aberrations measured.

Different aberrations could be induced by inserting spherical and cylindrical lenses or warped

pieces of glass. In this way, wavefronts measured by the LRT and SHS are compared directly.

Results are reported in terms of Zernike modes. The differences between the two systems was

small, with an RMS error of approximately 12%. The LRT exhibited consistently smaller

aberrations, which the author theorizes is due to the simplicity of the setup. The additional

optics of the SHS may contribute to the slightly higher aberrations. This paper validated the

concept of single-pass LRT and showed that the resulting aberrations measured by both LRT

and SHS are consistent.

GM

OS

L1 L2

CCDA

BS

Figure 24: Single-pass LRT from [35]. Optical source OS launches a thin pencil beam at galvo-
scanning mirror GM. The beam is directed toward beam splitter BS, through collimating lens L1
and optional aberrating plate A then to lens L2 to focus it onto the CCD camera. Three beams
are shown for reference.

OS

L1 L2

CCDA

L4 L5L3

EP

MLA

Figure 25: Shack-Hartmann setup from [35] Optical source OS launches a beam to collimating
lens L1. The collimated beam passes through optional aberrating plate A. Lenses L2 and L3 form
an image on the micro-lens array MLA through pupil stop EP. Lenses L4 and L5 form an image of
the spots on the CCD camera.

4.1.2 Double-Pass LRT

While the single-pass case can be useful for measuring transmissive optical components it is

unable to function in situations, such as the human eye, where transmission is not possible.
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L1

L2
L3

DET

OS
GM

BS

L4 L5 L6OM A

CMP

TO

GM

Figure 26: A basic double-pass LRT. Optical source OS launches a thin collimated beam to lens
L1 which focuses the beam on galvo-scanning mirror GM. The beam is re-collimated by lens L2
and sent to beam splitter BS. The beam then interrogates the test object TO. TO is composed of
aberrating plate A, lens L3, and object mirror OM. The beam reflects off OM and returns through
BS to lenses L4 and L5 which form an image of the pupil plane of TO. Lens L6 focuses the beam
onto detector DET. Three field angles are shown for reference.

In this situation it is necessary to utilize a double-pass setup as shown in Figure 26. In this

version, the collimated pencil beam is focused by lens L1 on the galvo-scanning mirror GM

and, as in the single-pass example, the articulated beams are made paraxial by lens L2. Each

beam is sent to the beam splitter BS which directs the light to the ‘eye model’ TO. The

model consists of an (optional) aberrating optic A, short focal length lens L3 (f = 35 mm)

and an object mirror OM. The pupil plane of the eye model is imaged by lenses L4 and L5.

Lens L6 focuses the beam onto the detector DET. As in the single-pass case, the beam will

be displaced off of the nominal position due to aberrations at the scan location.

To verify the functionality of a double-pass LRT, Moreno-Barriuso and Navarro compared

wavefront measurements from LRT and SHS in both artificial and human eyes [33]. In

contrast to the experiment in the previous paper, this setup incorporates both single-pass and

double-pass measurements. The authors verified that the wavefronts obtained for single-pass

and double-pass setups were equivalent, even though the interrogating light passes through

the aberrated optics twice in the double-pass version. This is due to the fact that on the first

pass the optics of the eye form a retinal image of the Gaussian laser spot. Upon reflection

from the retina, the eye forms an aerial image of the spot in the pupil plane. The image is

the cross-correlation between the Gaussian spot and the point spread function (PSF) of the
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eye, so while the spot is blurred due to the PSF, the spot location (centriod) is not affected.

Together, these papers describe the foundational aspects of LRT as a wavefront sensing

modality. With these tools in hand, as an initial setup, a standard double-pass LRT was

built. This was used as a test-bed of sorts to build up the software and hardware resources

necessary to begin exploring a coherence-gated LRT.

4.2 Standard LRT Experimental Setup

As an initial step, an LRT was constructed, without coherence gating, to allow for devel-

opment of the hardware and software resources. A simplified block diagram of the setup

is shown in Figure 27. In this implementation, National Instruments Labview software was

utilised on a standard PC. Outboard hardware connections were made to the PC via a

PCI-card and breakout board (NI PIC-6024E). The PCI card contains two, 12-bit digital-

to-analogue converters (DACs) and 16 analogue-to-digital converters (ADCs). The breakout

board contained all the necessary connections, via terminal blocks, to connect the ADCs and

DACs to the LRT system. The two DAC signals were used to generate control signals for

the galvo-scanning mirror, which is incorporated into the main body of the LRT optics setup

(Figure 30 shows the internal optical layout). The output of the LRT is detected by a dual-

axis position-sensitive detector. The current signal output is amplified and converted into a

voltage by a transimpedance amplifier circuit and sampled by the Labview ADC (discussed

above). The resulting samples are sent back to Labview for storage and post processing.

Initially, the LRT utilised a PSD as the detector, which is an analogue device capable of

measuring the location of a light spot, on its surface, to very high accuracy. PSD functions

are based on the well known photovoltaic properties of photodiodes but unlike a photodiode

the active surface of PSD is diffuse over a large planar area.

There are two main types of PSD: segmented and lateral effect. A segmented PSD, often

referred to as a quad-cell, is composed of four distinct detecting segments separated by a

‘dead zone.’ When the beam is incident across any of the segments a current proportional to

the illumination on that segment is produced and by comparing these currents the position of

the spot may be determined. The drawback with this approach is that if the beam happens

to be placed totally in one segment then the position can no longer be determined. For

example, the position of the red beam in Figure 28 can be determined, whereas, the position

of the blue beam cannot as it is located completely in one quadrant. For this reason quad-

cells tend to work best for monitoring a fairly static beam position confined to a small central
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Figure 27: A block diagram of the initial double-pass LRT setup. A standard PC runs Labview.
The outboard DAC and ADC are connected to the PC via a breakout board and PCI card (NI PIC-
6024E). The DAC generates control signals for the galvo-scanning mirror. This steers the scanning
beam through the internal optics of the LRT (not shown). The output of the LRT is sensed by
a position-sensitive detector (PSD). The outputs of the PSD are amplified by a transimpedance
amplifier and sampled by the ADC. The results are sent back to Labview for storage and post
processing.

location. This does not fit the requirements for LRT so the other type of PSD, lateral effect,

was chosen.

A lateral effect PSD, in contrast to the quad-cell PSD, has a continuous active area over

which the light spot location may be determined. A duo-lateral PSD allows the determination

of both x and y position by stacking two photodiode layers at a 90◦ angle as shown in

Figure 29. Unlike a quad-cell PSD the lateral effect PSD divides the photo-generated current

I0 between the two contacts on each layer. One layer acts as a current source while the other

acts as a sink so current enters one layer and exits from the other. Each layer basically acts

as a current divider with the proportion of current entering/exiting each pair of contacts

proportional to the light spot location on the surface and the overall intensity. The current

I appearing at each contact is

I = I0
sinh(a[L− S])

sinh(aL)
(4.1)

where I0 is the induced photocurrent, a is known as the Lucovsky falloff parameter, S is

the distance from the centroid of the light spot to the edge of the active area, and L is the

total length of the active area. In practice, a is a function of the N-type region of the layer

and approaches 0, so 4.1 becomes
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Figure 28: A quad-cell type PSD. The red beam’s position is registered while the blue beam is
not.

y

x

Figure 29: A lateral effect type PSD. Two diffuse photodiodes are stacked, one for the x-axis and
one for the y-axis.

I = I0

(
1− S

L

)
(4.2)

which guarantees that the PSD will exhibit good linearity over the entire active area. The

PSD chosen for the initial setup, sourced from Edmund Optics (part number 58-282), was

duo-lateral with an active area of 4 mm2. The small active area gives the PSD a fast rise time

of 0.025µ sec. The sensitivity of the PSD is 400 mA W−1 which is more than sufficient for

the typical optical power available at the detector (easily 50µW). The PSD x and y current

outputs are converted to voltages and amplified by a transimpedance amplifier with a gain

of 10 M. The voltages are then sampled by the ADC and stored in the PC. While a PSD
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is well suited for non-coherence-gated LRT it was determined that it would be unsuitable

for CGLRT due to its inability to differentiate interference fringes outside a very small area

around OPD= 0. The average intensity of the interference fringes, when spread across a

large portion of the PSD surface, is unchanging as the fringes are modulated. As such, the

PSD is unable to differentiate between the modulating ”AC” component of the fringes and

the ”DC” component due to stray reflections or light returned from outside the coherence

gate. For this reason the PSD was eventually replaced by a high-speed CCD camera. For

this initial measurements though, a PSD was utilised for all spot position measurements.

The initial LRT setup is shown in Figure 30. The measurement beam is launched by

optical source OS (675 nm super luminescent diode (SLD)) and collimated by lens LC. The

SLD exhibits a high degree of spatial coherence, as one would expect from a standard laser,

but has a much lower temporal coherence. Lenses L1 (f = 200 mm) and L2 (f = 30 mm)

form a beam reducer which decreases the beam diameter from ≈ 210 mm to ≈ 0.5 mm.

Lens L3 (f = 75 mm) focuses the beam onto the galvo-scanning mirror GM. The beam is

re-collimated by lens L4 (f = 75 mm) and sent to beam splitter BS. BS directs the beam to

the test object TO which consists of a short focal length lens L5 (f = 35 mm) and object

mirror OM. The reflected beam passes through BS and the pupil plane of L5 is imaged by

lenses L6 and L7 (both f = 75 mm). The beam position is then sensed by the detector DET,

in this case a PSD.
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Figure 30: Initial LRT system. The measurement beam is launched by optical source OS
(675 nm SLD) and collimated by lens LC. Lenses L1 (f = 200 mm) and L2 (f = 30 mm) form
a beam reducer which decreases the beam diameter from ≈ 210 mm to ≈ 0.5 mm. Lens L3
(f = 75 mm) focuses the beam onto the galvo-scanning mirror GM. The beam is re-collimated
by lens L4 (f = 75 mm) and sent to beam splitter BS. BS directs the beam to the test object TO
which consists of a short focal length lens L5 (f = 35 mm) and object mirror OM. The reflected
beam passes through BS and the pupil plane of L5 is imaged by lenses L6 and L7 (both f = 75 mm).
The beam position is then sensed by the detector DET, in this case a PSD. The option exists to
place a transparent aberrating optic in the test object between BS and L5.

A typical LRT scan is as follows:

• Upon system startup GM is centered and the system enters an idle state.

• A scan is initiated.

• The GM is commanded to move to location 1 (command voltages specified in Labview)

and given time to move and settle.

• Labview acquires the current x and y voltages from the PSD via the ADC.

• After data acquision is complete the GM is commanded to move to location 2 and the

process repeats.

• When the last location data has been acquired the GM is re-centred and the system is

idle.

• All voltage data is saved to the hard disk in a delimited text file for post-processing in

MATLAB.
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It is important to note that for this incarnation of LRT all data analysis and wavefront

reconstruction was done in post-processing via MATLAB. This is in contrast with the FPGA

based CGLRT implementation in which all data processing is performed in real-time on the

embedded system. The real-time FPGA architecture is discussed in detail in Chapter 5 and

the CGLRT system implementation and results are discussed in Chapter 6.

In order to test the functionality of the LRT aberrations were introduced into the test

object TO via insertion of a microscope slide. The slide was placed between the beam splitter

BS and lens L5 in several tilted variations, as shown in Figure 31. The following aberrations

were introduced:

• small tilt in X (approximately 1◦).

• large tilt in X (approximately 2◦ − 3◦).

• tilt in Y (approximately 1◦).
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BSMSL5OM

Y-Tilt

BSMSL5OMBSMSL5OM

X-Tilt Small X-Tilt Large

Figure 31: Close-up view of the test object TO in Figure 30 including the beam splitter BS. In
each view, a microscope slide MS is inserted between BS and lens L5 to introduce a tilt aberration.
Top left: Small tilt in x. Top right: Large tilt in x. Bottom centre: Tilt in y.

For each measurement a 9-by-9 spot pattern was generated via the scanning mirror.

Galvo control voltages were stepped from -200mV to 200mV in 50mV steps. Each spot was

allowed to settle for approximately 200ms before data was acquired. The spot position on

the PSD was sampled at 1kHz and ten consecutive data points were acquired at each spot

position and averaged.

First, a calibration spot pattern was generated by scanning without the slide inserted.

The raw spot locations are shown in Figure 32, with ten measurements at each scan posi-

tion. It is clear from the plot that the spot locations were very stable over the course of

the scan. Figure 33 shows the spot locations after each of the ten measurements was aver-

aged. This is used for the reference locations from which the ∆x and ∆y’s are calculated.
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Figures 34, 37, and 40 show the measured spot locations (blue triangles) compared to the

calibration spot locations (red circles) for each induced abberation. Figures 35, 38, and 41

the reconstructed wavefront for each scan utilising the first 14 Zernike modes (piston re-

moved). Refer to section 5.5.1 for a details on the calculation of the Zernike modes. Fig-

ures 36, 39, and 42 show the value of the calculated Zernike coefficients for each scan.
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Figure 32: LRT raw measured spots. Ten measurements are taken at each location. Markers at
each location vary in shape and colour to clearly indicate if any measurement is erroneous. The
consistency of the markers shows that the measurements did not vary from location to location.
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Figure 33: LRT averaged measured spots.
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Figure 34: Spot pattern for small tilt in X.
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Figure 35: Reconstructed wavefront from 14 Zernike terms for a small X tilt.
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Figure 36: Zernike coefficients for a small X tilt.
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Figure 37: Spot pattern for large tilt in X.
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Figure 38: Reconstructed wavefront from 14 Zernike terms for a large X tilt.
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Figure 39: Zernike coefficients for a large X tilt.
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Figure 42: Zernike coefficients for a Y tilt.

4.3 Coherence-Gated LRT Experimental Setup

In its basic form LRT exhibits a large depth range making it ineffective for depth-resolved

wavefront sensing. This also makes LRT sensitive to stray reflections such as those common in

microscopy, which can make the determination of the spot centroid difficult if not impossible.

By reducing the depth range of the sensed wavefront the use of LRT can be expanded to other

imaging modalities that utilize adaptive optics such as optical coherence tomography. By

combining LRT with LCI its effective depth range may be reduced to within the coherence-

length of the interferometer. This section describes the development of the CGLRT wavefront

sensor, based on a Mach-Zehnder interferometer, and presents the results of interrogating a

multilayer object.
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The experimental setup of the CGLRT developed during this research is illustrated

in Fig. 43. A superluminescent diode (SLD) with a central wavelength of 675.5 nm and a

FWHM bandwidth of 8.8 nm is utilized as an optical source. These characteristics correspond

to an axial coherence gate of 23µm in air (via Equation 3.1). A beam 5 mm in diameter is

collimated by lens CL and sent to beam splitter BS1 forming the reference (blue) and object

(red) arms of the interferometer. The reference beam is left uncompressed to illuminate the

entire area of the camera sensor. This is needed, to ensure interference as the location of the

scan beam moves on the detector surface due to aberrations in the test object. The reference

beam is sent via mirror M1 to the piezo-electric transducer (PZT) mounted reference mirror

RM. The PZT is used to introduce phase modulation when driven by a DAC (not shown).

The RM and PZT are both mounted on a linear translation stage (LTS) that provides axial

adjustment of the reference arm path length.

The object beam is first reduced to a diameter of approximately 700µm by lenses L1

(f = 200 mm) and L2 (f = 30 mm). This decreases the beam diameter making it suitable for

scanning. The beam is focused upon the galvo-scanning mirror GM by L3 and re-collimated

by L4 (both f = 75 mm). The beam is then sent via beam splitter BS2 to multi-layer object

MLO. The MLO consists of lens L5 (f = 35 mm), two microscope slides and object mirror

OM. The reflected beam passes once again through L5 and BS2. Lenses L6 and L7 (both

f = 75 mm) form a real image of the spot which is then focused onto the CMOS camera

(Pulnix AccuPiXEL 1402CL,1024× 1024 pixels) by lens L8 (f = 75 mm). The uncompressed

reference beam is recombined with the object beam at BS3 and incident upon the CMOS

camera.

Interference will take place between the scanning pencil beam (object arm) and reference

arm when the optical path lengths match. A four-step phase-shifting interferometry (PSI)

algorithm [60] is used to recover an image of the scanning spot on the CMOS camera. For

each scan location p, four images Ii where i = 0 to 3 are obtained. Each image corresponds

to a PZT induced phase shift of (π/2) i and the image intensity is given by

I(x, y) =

√
(I2 − I0)2 + (I3 − I1)2 (4.3)

The GM deflects the scanning beam 1 ◦/V in both x and y. When paired with L5 this

produces a scan area of 2.6 mm by 2.6 mm. For the pth spot acquired by the LRT, the DAC

commands the GM to position (xp, yp) in the range of −1 V to 1 V (in 0.25 V increments).

This equates to p = 81 scan points arranged in a 9 × 9 grid. Though this grid size was
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Figure 43: CGLRT experimental setup. SLD, superluminescent diode; CL, collimating lens; BS1,
BS2, BS3, plate beam splitters; L1-L8, achromatic doublets; GM, galvo-scanning mirror; RM,
reference mirror; PZT, piezoelectric actuator; MLO, multi-layer object composed of object mirror
OM and 2 glass microscope slides; M1, mirror.

chosen for this demonstration, one of the advantages of LRT is that any scan pattern and/or

number of points may be selected by the user simply by altering the DAC outputs.

Fig. 44 shows a zoomed in view of the MLO. Two microscope slides, approximately 1 mm

thick, are inserted before the object mirror OM. To introduce aberrations the slides are

tilted in the x-axis (parallel to the optical bench) in opposite directions (θ ≈ 0.013 rad). A

best effort was made to minimize the y-axis tilt (normal to the optical bench) by manual

adjustment. The four faces of the slides and OM form five surfaces, labelled P1 - P5, defined

by the refractive index change from air to glass, which form the wavefronts of interest. The

reflections from P1-P4 are much weaker than that strong reflection returned from the OM.

To begin with, the scanning beam is focused between P4 and P5 as this roughly equalizes

the size of the returned beams. Next, the RM is adjusted axially using the LTS to acquire

fringes for the OM by achieving OPD = 0. A spot pattern is then acquired by actuating

the GM to each scan position and obtaining four images at each location in the four-step
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PSI manner described above. For p = 81 scan locations this equates to 324 total images

per surface. The LTS is then adjusted again to match path length with the P1 surface, a

scan performed, and spot pattern obtained. This sequence is repeated for all surfaces to P5.

In all measurements the MLO is kept in its fixed position and only the RM is adjusted to

obtain OPD = 0. Lastly, a calibration scan is taken with the reference beam blocked and the

microscope slides removed. The focal point of the scanning beam was not adjusted for the

calibration scan. The calibration scan allows aberrations due to the system to be removed as

this set of images was considered the reference for all the wavefront slope calculations. The

calibration scan is only required once during a single run, as nothing in the setup is changed

other than the OPD adjustment in the reference arm. Therefore, any aberrations present in

the system (and not due to the sample) should be static over a single run.

The purpose of this initial implementation was solely to demonstrate the ability of CGLRT

to perform depth-resolved wavefront sensing. As the embedded system portion of this re-

search was yet to be built, timing of the current setup was not of great concern. That being

the case, minor effort was to optimize the acquisition speed of the system. To capture the en-

tire set of 324 images took the system approximately 54 seconds. Approximately 16 seconds

of this time is due to the settle time allotted for the galvo-scanning mirror. The remaining

38 seconds are consumed by Labview acquiring and saving the images, which yields an effec-

tive frame rate of 8.6 fps. This does not include the time it takes for image post-processing

and wavefront reconstruction in MATLAB, which is done after the scan is complete. This

provides motivation for the development of the FPGA based embedded systems platform

which is discussed in the next chapter.

Figures 45, 46, 47 and 48 shows a typical set of four images obtained at one scan location

and the coherence-gated image 49. In images 45 through 48 the reference beam is visible

as the large diameter illumination. The bright central reflection is due to the OM while the

dimmer right-hand and left-hand side reflections are due to P1-P2 and P3-P4 respectively.

The reflections from P1 and P2 are very closely overlaid and are indistinguishable in the

image. The same is true of the P3 and P4 reflections. Image 49 is the coherence-gated spot

after applying the four-step algorithm and shows the removal of all unwanted reflections

including the bright central spot from the OM.

The spot patterns for each layer were then used to calculate a corresponding wavefront.

Aberrations were calculated in terms of Zernike polynomials [45], the first 12 of which are

shown in Fig. 50. There is a small amount of y-tilt, likely due to a small misalignment

of the MLO. Of more interest are the x-tilt values, clearly showing the positive tilt from

surfaces P1 and P2, and the negative tilt from P3 and P4. As expected P5 (the OM) has
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negligible x-tilt. As the focus was fixed during the entire experiment the defocus term is

greatest at P1 and decreases as P5 is approached. As noted in [35], a large amount of

astigmatism is introduced into the system by the GM due to the 10 mm spacing between the

x-axis and the y-axis scanning mirrors. This is mostly removed by the calibration but small

residuals remain. These could be reduced to negligible levels in the future by the addition of

a cylindrical lens after the GM. These results confirm that CGLRT is able to perform depth

resolved wavefront sensing by measuring aberrations returned from multi-layer objects.

4.4 Conclusion

The Labview based LRT and CGLRT systems demonstrate the ability of the sensor to per-

form depth-resolved wavefront measurements, but the system does not operate in real-time.

In order to implement real-time functionality the control, image acquisition, image process-

ing and wavefront reconstruction are all performed on a high-speed FPGA. This allows the

system to be realised in the form of a self-contained instrument with all computational pro-

cesses performed in an embedded systems environment. Chapter 5 discusses the details of

the FPGA architecture and its implementation while Chapter 6 discusses the results of the

final FPGA based CGLRT instrument.
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Figure 44: Microscope slides and mirror used to form the multi-layer test object. Surfaces P1-P4
are defined by the air-glass interface of each microscope slide. Surface P5 is defined by the object
mirror OM. θ ≈ 0.013 rad. Maximum distance between the inner surfaces of the slides (P2 and P3)
is approximately 1 mm. The chief ray is shown interrogating the test object from the top. Area
of interrogation is approximately 2.6 mm by 2.6 mm centered on the slides. The axial coherence-
width of the interferometer is 23 µm. Insert illustrates the size of the microscope slides which is
approximately 75 mm by 25 mm by 1 mm.
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Figure 45: Raw scanning beam image with 0◦ phase shift. Reference beam, strong central
reflection, and weaker side reflection from slides. Interference fringes clearly visible on side reflection
from P1.
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Figure 46: Raw scanning beam image with 90◦ phase shift. Reference beam, strong central
reflection, and weaker side reflection from slides. Interference fringes clearly visible on side reflection
from P1.
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Figure 47: Raw scanning beam image with 180◦ phase shift. Reference beam, strong central
reflection, and weaker side reflection from slides. Interference fringes clearly visible on side reflection
from P1.
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Figure 48: Raw scanning beam image with 270◦ phase shift. Reference beam, strong central
reflection, and weaker side reflection from slides. Interference fringes clearly visible on side reflection
from P1.
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Figure 49: Coherence-gated image from surface P1. Light from sources other than P1 has been
suppressed by the process of coherence-gating.
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Figure 50: The first 14 Zernike coefficients for surfaces P1-P5.
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Figure 51: The wavefront measured from surface P1.
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Figure 52: The wavefront measured from surface P2.
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Figure 53: The wavefront measured from surface P3.
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Figure 54: The wavefront measured from surface P4.
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Figure 55: The wavefront measured from surface P5.
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5 Field Programmable Gate Arrays and Real Time

CGLRT

5.1 An Introduction to Field Programmable Gate Arrays

FPGAs are programmable logic devices (PLDs) that fill a niche between application specific

integrated circuits (ASICs) full custom and general purpose integrated circuits (GPICs),

such as CPUs and microcontrollers. ASICs are custom designed semiconductor devices that

are manufactured for a specific purpose, (i.e. an MPEG-2 video encoder [21]) often for

use in a specific device. ASICs are not reprogrammable and once manufactured, cannot be

altered. This makes them extremely powerful tools for specific applications, but brings with

it the drawback of being inflexible and cost-ineffective unless produced in mass quantities

due to the fact that ASIC’s require custom manufacturing of the circuit. On the other end

of the scale are GPIC’s which are well suited for many different applications but at a cost

to performance due to lack of specialization. FPGAs, on the other hand, are well suited for

applications that require a specialized device that can be reprogrammed as necessary, without

the performance hit of a GPIC. This allows the engineer to design circuits at the logic-gate

level for specific applications on a one-off basis. The drawbacks of FPGA design include

coding in highly specialized hardware description language (HDL) with correspondingly long

development times. Also, as designs get more complex, synthesis times can greatly increase

making iteration on a design time consuming, at least compared to the short compile times

associated with more familiar languages such at C++. The trade-offs are often well worth

the effort though, as FPGAs are able to implement highly complex circuits, designed at the

logic-gate level, allowing for fine-grain handling of digital signal processing (DSP) functions

as well as a high degree of parallelization. This makes FPGAs a highly competitive platform

for implementing complex, high-speed embedded systems. At the highest level, a typical

FPGA consists of five main subsystems [67]:

1. Configurable logic blocks (CLBs)

2. Interconnects

3. Input/ouput buffers (IOBs)

4. Memory & DSP slices
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Device Slices LUTs
Maximum

Distributed RAM (Kb)
Flip-Flops

Virtex-6 XCVLX240T 37,680 150,720 3,770 301,440

Virtex-6 XC6VLX75T 11,640 46,560 1,045 93,120

Virtex-6 XC6VLX760 118,560 474,240 8,280 948,480

Spartan-6 XC6SLX4 600 2,400 75 4,800

Spartan-6 XC6SLX45 6,822 27,288 401 54,576

Spartan-6 XC6SLX150 23,038 92,152 1,355 184,304

Table 2: CLB resources available in a variety of Xilinx devices, including the Virtex-6 XCVLX240T
which is utilised by the CGLRT instrument.

CLBs are basic building blocks of an FPGA. The exact structure of a CLB varies from

device to device so here the discussion will focus on the Virtex-6 device [66] as it is utilised

for CGLRT. Each CLB on the Virtex-6 contains two slices, where a slice consists four look-

up tables (LUTs), eight flip-flop storage elements and multiplexers. Also, a subset of the

slices support storing 256-bits of data as distributed random-access memory (RAM) and

contain four 32-bit shift registers. Each slice LUT can be considered an independent function

generator as it can implement any arbitrary six-input Boolean function. Multiple LUTs

can be utilised in speciality slices to implement distributed RAM or read-only memory

(ROM) elements as well. Table 2 summarizes the available CLB resources on the Virtex-6

XCVLX240T and other Xilinx devices. The Virtex-6 XC6VLX75T is the smallest device in

the family while the Virtex-6 XC6VLX760 is the largest. The spread in values shows that

the Virtex-6 XCVLX240T is a mid-range device. Resources from the Spartan-6 family of

(smaller) FPGAs is also shown for the sake of comparison.

CLB signals are routed to each other and to external input/output connections via a

series of interconnections that are controlled by the FPGA design software. This includes

specialized interconnects for routing global clock signals, which are required to have low-

skew, allowing the various distributed FPGA resources to remain in sync. The interconnects

also provide access to the high-level IOBs which allow external signals to be sent/received

to/from the FPGA. IOBs can be considered the way the FPGA ‘talks’ to the outside world.

The number of IOBs varies per device with the Virtex-6 XCVLX240T having 600. For

comparison the smallest Virtex-6 chip, the XC6VLX75T, has 360 IOBs whereas the largest,

the XC6VLX760 has 1200.
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FPGAs also contain dedicated memory resources known as block RAM (BRAM). Each

BRAM instance on the Virtex-6 FPGA is 36 Kb wide and composed of two independently

controlled 18 Kb RAMs. BRAM instances can be utilized for many purposes including

single-port RAM (SPRAM), dual-port RAM (DPRAM), synchronous and asynchronous

first-in/first-outs (FIFOs), and ROMs. The DPRAM instances are especially useful for

crossing clock-domains as the read and write clocks can operate asynchronously. This is also

true of the FIFO instances, which may be used to cross clock-domains as well. The Virtex-6

XCVLX240T has a total of 14,976 Kb of memory available as BRAM.

Another resource available on the Virtex-6 FPGAs is the DSP48E1 DSP slice which is a

specialized slice composed of a 25× 18 multiplier, an adder and an accumulator [65]. Due to

their specific design these slices are able to run at a higher frequency than those implemented

directly in fabric allowing the designer to take advantage of time-division multiplexing tech-

niques and pipelining. The multiply-accumulate action is very common in DSP applications

so the use to the DSP slices can free up general purpose FPGA resources. The Virtex-6

XCVLX240T has 768 DSP48E1 slices available.

5.2 An Embedded Systems Approach to Wavefront Sensing

In practice, wavefront sensors are not stand-alone instruments, but part of a larger imaging

system. This is true for applications such as OCT where the wavefront sensor will be

incorporated into the AO sub-system that performs aberration correction for the larger

imaging system. In clinical applications these systems are most often found in the form

of self-contained instruments with integrated optics, electronics, mechanical and computing

sub-systems.

The demand for real-time performance of such systems has put a higher demand not

only on the optical and mechanical portions of the system but also on the speed of the

computational system. As the optical systems have become more sophisticated the limita-

tions on real-time performance have shifted to computing system’s ability to perform image

reconstruction and associated tasks. This has led to a great interest in specialised parallel

computing resources such as graphics processing unitss (GPUs) and FPGAs. In the case

of CGLRT the decision was made to utilise an FPGA platform, opposed to a GPU, for

several reasons. Firstly, the FPGA is better suited to interface with the external hardware

required by CGLRT. The availability of abundant I/O and convenient form factors such as

the FPGA mezzanine card (FMC) and PMOD facilitate (relatively) simple connections to

external hardware. For example, in the CGLRT instrument the Xilinx FMC-CE expansion
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card (shown in Figure 88) is used to connect two external digital to analogue converter

(DAC)s and provide manual user inputs via slide-switches and push-buttons. The FMC and

PMOD standards will be discussed in more detail in Chapter 6.

Secondly, the FPGA offers fine-grained parallel computing resources that allow for real-

time wavefront reconstruction. The FPGA can easily interface with ADCs, DACs, and sim-

ilar external systems which make it well suited for system command and control operations.

GPUs also excel at parallel computing, especially in the case of floating-point operations,

but still require a CPU to interface with and are not able to control external hardware on

their own. Interfacing to the CPU requires the transfer of large amounts of data from the

GPU memory to the CPU (typically over a PCI bus) which can often eliminate any gains

in speed made by incorporating the GPU in the first place [22]. Lastly, it has been shown

that FPGAs are better suited for OCT type imaging systems [22, 53] due to the scalability

of combining several FPGAs into a single system.

The drawback of utilising an FPGA lies in the development time. Li, et al., [22]

state, for example, that development of an OCT image reconstruction system on a GPU

took approximately 3 months whereas development of a comparable system on an FPGA

took approximately a year. Another drawback associated with FPGAs is the difficulty of

generating test signals and debugging. Traditionally, these tasks were accomplished via a

testbench which is a separate piece of HDL used to define input signals and drive the FPGA

circuit with them at given times. Building a testbench is often very time consuming and an

art in itself. To overcome these limitations the MATLAB suite of software was utilised for a

major portion of the system development.

5.3 FPGA design workflow

MATLAB may be used to generate highly-efficient VHDL by utilising the well-known block

diagram based Simulink environment. Xilinx provides specialized Simulink blocks that cor-

respond directly to FPGA resources such as registers, adders, and DSP slices. The integrated

MATLAB workspace may then be used to generate test signals which are sent to the Simulink

FPGA design and processed. The outputs may be captured and sent back to the MATLAB

workspace for analysis. This makes testing and debugging the design much simpler and

time efficient. The final design may then be synthesised within the Simulink environment

generating the files needed to program the FPGA hardware. These files may then be utilised

as components in a higher-level design, etc.
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A diagram of the System Generator based FPGA design workflow is shown in Fig-

ure 56. Within a given System Generator Simulink project there is a subsection which must

be comprised completely of the Xilinx supplied blocks (shown as the grey section labelled

Synthesizable). Each Xilinx block consists of some type of fundamental FPGA component

whether that be a constant, adder, multiplier, comparator, or the like. These blocks are

combined to form the main systems within the design. Only the Xilinx provided blocks

may be used in this portion of the design because these blocks are able to be synthesized

directly into hardware resources. Signals may be sent to the design as inputs and read from

the design as outputs via theinput gateway and output gateway blocks. These blocks map

directly to the top level IOBs of the FPGA. Signals may be sent into, and read from the

design from the MATLAB workspace using these blocks as well. The input and output gate-

ways are the only allowable method for sending and receiving external signals to/from the

design. From a design point of view this greatly enhances the engineer’s ability to quickly

test and debug the circuit. No testbench is needed as all testing may be done directly via the

MATLAB workspace. External devices such as DACs and ADCs may be simulated within

the MATLAB workspace as well, providing a way to integrate the FPGA architecture with

external hardware. After the system has been tested within the MATLAB environment it

may be synthesized into HDL which is used to program the hardware directly.
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Figure 56: Flow diagram of System Generator based FPGA development. Input and output gate-
ways send and receive signals from the MATLAB workspace. The grey portion of the illustration
represents the part of the system that is synthesizable into hardware.

5.4 CGLRT System Architecture

Figure 57 shows a top-level block diagram of the CGLRT FPGA system. Each of the

subsystems shown will be discussed in detail in the following sections, but a short overview

is given here. In the centre of the diagram is the master state-controller (MSC) which is

responsible for coordinating all of the subsystems in the design and generating the command

signal to control them. In essence, the MSC is an finite state machine (FSM) which acts as
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the “brain” of the CGLRT system. At the top of the diagram are the Scanner Controller and

Scanner DAC subsystems. The Scanner Controller is responsible for generating the control

signals that the Scanner DAC will convert into voltages supplied to the galvo-scanning mirror.

The PZT DAC is responsible for generating the voltages necessary to step the reference mirror

PZT which modulates the optical path-length of the interferometer. To the bottom right the

external camera sends pixel data to the Frame Grabber. The MSC determines when a frame

should be acquired, depending on the scan state, and directs the Frame Grabber accordingly.

Pixel data from the Frame Grabber is saved in either Raw Image Memory A or Raw Image

Memory B. The save location is determined by the MSC (control signals not shown for sake

of clarity) and corresponds to the phase modulation as required by the four-step algorithm

from Equation 4.3. Once the needed images are acquired the PSI algorithm, centroiding,

and slope calculations are performed in the Image Post Process block. The slopes are then

streamed to the Wavefront Recovery subsystem where the Zernike mode magnitudes are

calculated. They may then be delivered to an external PC via the UART connection. The

following sections provide details on the operation of each of these subsystems.
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Figure 57: CGLRT top level system block diagram.
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5.4.1 Master State Controller

The MSC is responsible for generating all the command signals used to coordinate the

various CGLRT subsystems including the scanner controller (responsible for handling the

scan patterns and galvo-scanner DAC), the frame grabber, the PZT DAC (responsible for

modulating the reference arm path length) and the wavefront reconstructor.

Figure 58 shows a state diagram of the MSC. The following signals are utilised by the

MSC:

• start scan (bool): User input signal indicating a scan is to be performed. Held high

for one clock cycle.

• num pts (6-12 bits depending on scan size): Total number of points to be acquired in

a scan.

• N (6-12 bits depending on scan size): Counter used to keep track of the number of

points that have been acquired by the scan in progress.

• i (2-bits): Counter used to keep track of the four PSI images (I0 − I3).

• next point (bool): Commands the Scanner Controller to move the galvo-scanner to

the next point in the scan. Held high for one clock cycle.

• point acquired (bool): Indicates to the MSC that the galvo-scanner has moved to

the next point. Held high for one clock cycle.

• acquire frame (bool): Commands the frame grabber to begin reading the next avail-

able frame from the camera.

• frame acquired (bool): Indicates to the MSC that the frame grabber has competed

acquiring the frame.

• pzt step (bool): Commands the PZT DAC to modulate the reference arm path-length

for PSI image acquisition.

When the system is powered up the MSC initialises to the RESET state where counters

N, i and the start scan signal are all set to 0. N is used to store the number of scan points

that have been acquired and i is a 2-bit counter used to keep track of the PSI frames 0-3.

After the RESET state is complete the system transitions to the IDLE state. Here the system
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simply waits for the start scan signal to be exerted. Once a scan is started the system

repeats the following sequence of states until N equals the total number of points.

First, the system transitions to the go to point state where next point is held high for

one clock cycle. This indicates to the scanner controller to move the galvo-scanning mirrors

(see Section 5.4.2 for details). The MSC transitions immediately to the wait for point

state where the point acquired signal is awaited. When point acquired is high, this

indicates that the galvo-scanner has finished moving and a frame may now be acquired. The

MSC then transitions to the grab frame state where the acquire frame signal is set high,

indicating to the frame grabber that it should being gathering pixel data from the camera.

The MSC immediately moves to the wait for frame state. Once the frame is acquired the

frame acquired signal is held high by the frame grabber and the MSC transitions to the

move pzt state. Here the pzt step signal is held high commanding the PZT DAC to step

the PZT. Also, the N and i counters are incremented. If i < 4 then all coherence-gated

(CG) images have not been acquired so the MSC returns to the grab frame state to acquire

the next CG image. If i = 4 and N 6= num points then the MSC returns to the go to point

state to acquire the next point in the scan. If, on the other hand, i = 4 and N = num points

then the entire scan is complete and the MSC transitions to the reset state where the

counters are reset and the system returns to the idle state. The system will remain in the

idle state until another start scan signal is exerted.
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Figure 58: Master State Controller block diagram.
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5.4.2 Scanner Controller

The scanner controller is responsible for handling the control of the galvanometer mirrors

used to articulate the scanning beam position. The subsystem consists of three components,

as shown in Figure 59, which are the scan pattern generator, the DAC controller, and the

external DAC hardware.

The scan pattern generator, shown in Figure 60, is responsible for generating the scan

pattern control signals that are sent to the DAC Controller. It can generate either a circle

scan or a raster scan, depending on the pattern select control input. It consists of four

LUTs, two store the circle pattern x and y coordinates, and two the raster pattern x and y

coordinates. The stored values are pre-computed at compile time. The LUTs are addressed

by a counter which is reset by the scan en signal at the beginning of a scan and only

increments when the next point signal is exerted. Two multiplexers, controlled by the

pattern sel signal, are utilised to select between the raster and circle pattern coordinates.

Finally, the next point signal is sent, after a delay of one clock-cycle (to account for the

LUT delay) to the DAC Controller as a DAC enable signal. This signal is exerted to inform

the DAC Controller that the x and y coordinates should be written to the external DAC.

Input control signals scan en, pattern sel and next point originate from the MSC.

The DAC Controller consists of a simple two state FSM with an IDLE and WRITE

state. It is responsible for taking the 12-bit parallel scan x and scan y writing them serially

to the DAC hardware. It also generates the DAC hardware clock SCLK signal. On startup,

it initialises to the IDLE state where the SYNC signal is held high, indicating to the DAC

hardware that a write is not taking place. When the DAC enable signal is exerted the current

scan x and scan y values are loaded into two 16-bit registers, with the four MSBs being set

to 0 (The DAC hardware requires a 16-bit input, with the four MSBs being control inputs,

the 12 LSBs the signal). The controller then switches to the WRITE state, dropping the

SYNC signal low and serially writing the 16 bits to the DAC hardware over the scanner x

and scanner y signals. Once the write is complete the controller holds the point acquired

signal high for one clock cycle, indicating to the MSC that the value has been written to the

DAC hardware. The state then returns to IDLE and awaits the next point.

The DAC hardware consists of two National Semiconductor DAC121S101 chips on a

PMOD-DA2 board from Digilent. The PMOD standard from Digilent [6] is a peripheral

interface composed of either 12-pin or 6-in connectors. Every PMOD connection provides

VCC and GND connections. The board contains two 12-bit D/A converters with power and

ground signals provided by the ML605 FMC interface. The chips accept SCLK clock signals

103



5. FIELD PROGRAMMABLE GATE ARRAYS AND REAL TIME CGLRT

up to 30 MHz. For this application the SCLK is divided down by two in the 50 MHz clock

domain to 25 MHz for simplicity. The output voltages of the DAC hardware are connected

directly to the galvanometer scanning-mirror driver.

Figure 59: Top-level block diagram of the Scanner Controller.

Figure 60: Scan Pattern Generator.

5.4.3 Clock Domains and Clock Management

Digital architectures do not require all subsystems to run at the same clock rate. It is quite

common to have systems composed of several different ‘clock domains’ which run at different
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rates. It is often preferable to implement clock domains via ‘clock enables’ which divide down

the main system clock. This ensures that all clock signals are in sync by only routing the main

system clock throughout the FPGAs specialized global clock interconnects. Another option

is to generate separate clock signals for each clock domain using a clock manager, which

on the Virtex-6 is accomplished using the multi-mode clock manager (MMCM) resource.

While utilization of clock enables is often the preferred method, as it avoids the need to

transmit data across parts of the circuit running at different frequencies, this approach was

not chosen due to the requirement of using the external pixel clock from the camera. The

pixel data coming in from the camera must be synchronized with the FPGA frame-grabber,

which requires the frame-grabber to run off of the pixel clock provided by the camera. As

this external clocking requirement already created two clock-domains (the pixel clock and

system clock) the decision was made to keep to a single design methodology and utilize an

MMCM to generate all the needed clock signals.

Figure 61 shows how the various subsystems are divided into four clock domains. The

six subsystems within the camera clock domain are dependent upon pixel data to function

and are therefore limited to 50 MHz by pixel clock. While it is possible to run some of these

subsystems at a higher rate, there would be no advantage as the system would simply be

idle while waiting for new pixels. The DAC clock domain contains the Scanner Controller

FSM, galvo-scanner DAC interface and PZT DAC interface. All of these subsystems are

run at 20 MHz which is compatible with the DAC121S101 chip. The VGA driver and video

memory are contained in the VGA clock domain and run at 25.175 MHz which is dictated

by the screen resolution (640 × 480). Lastly, is the clock domain utilised by the UART

communication which runs at 100 MHz. This was chosen for convenience as the existing

UART code was designed to run at this frequency.

Data is transferred across clock domains using either registers or shared-memory mod-

ules. When a single bit signal, such as a flag or enable/disable is transferred, then the signal

is shared using a register. If a more complex signal is being transferred then a shared memory

module is utilised which consists of independently clocked dual-port RAM modules.
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Figure 61: Clock domains utilised in the CGLRT system.

5.4.4 Cameralink Interface

Pixel data from the camera arrives at the FPGA as a 28-bit word image data which is

a standard for the Cameralink protocol. In base mode (Cameralink has several modes

available) image data has the capability of sending three 8-bit pixels, three control flags

(frame valid,line valid and data valid) and the pixel clock. As the CGLRT camera is

greyscale, only one pixel is sent per 28-bit word and the other pixel values are zero.

The subsystem for handling the camera output is shown in Figure 62. The 28-bit word

has the 8 LSBs sliced out forming single pixel. The frame valid and line valid flags

are sent to a 3-input AND gate along with the cameralink locked flag all of which generate

the pixel valid flag. Finally, the frame valid flag (which is held high by the camera

for the entire frame) is sent to a rising-edge detector to generate a one-cycle pulse used to

indicate a frame has started. The single pixel and pixel valid flags are delayed by one

clock cycle to keep them in sync with the frame start flag.

106



5. FIELD PROGRAMMABLE GATE ARRAYS AND REAL TIME CGLRT

Figure 62: Cameralink Interface

5.4.5 Frame Grabber

In order to form the coherence-gated image Ic, four phase-shifted images, I0−I3 are required.

The acquired images are 250× 250 pixels, which is the largest frame that the CCD camera

can acquire at 96 fps. This image size was found to be sufficient for the observed deviations

in the 2.5mm scan area when focused on the detector. Lower resolutions may be chosen

(down to 25× 25 pixels) to increase the frame-rate of the camera, but these were too small

to capture the observed deviations from the MLO. In practice, the trade-off between frame-

rate and image will need to be tailored to the individual imaging system. These images must

be grabbed from the live camera feed, one frame at a time, when the grab frame signal is

exerted by the MSC. Figure 63 shows the state-flow diagram for the frame grabber. The

FSM initializes to the idle state and waits for the grab frame signal to be exerted. The

fg ready signal is held high indicating to the MSC that a frame can be obtained. Once

grab frame is exerted, the FSM transitions to the wait for frame state where a pixel address

of 0 indicates the start of a new frame. The fg ready signal is held low, signalling to the

MSC that it must wait for this frame to be finished before acquiring another. At addr== 0

the FSM transitions to the acquire frame state and begins sending the frame data to the

image binarization circuit. While the frame is being sent the binarize en signal is held

high to enable the binarization circuit. Once the entire frame has been acquired (addr ==

w*h-1) then binarize en is de-exerted and the FSM returns to the idle state. Lastly, the

fg ready signal is once again held high, indicating that the next frame may be obtained.
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Figure 63: Frame Grabber state diagram.

5.4.6 PSI Algorithm

Due to memory limitations in the FPGA it is critical to minimize the amount of resources

utilized for storing intermediate frames used for the PSI image processing and centroid

calculation. Recall that obtaining the Dth coherence-gated image ID, requires four phase-

shifted images as shown in Equation 3.3. Therefore, a total of 256 images need to be obtained

for even the smallest scan size of 64 points. For 8-bit pixels and a 250×250 image this would
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require 128Mb of memory to store all of the frames, much more than the roughly 15Mb of

block RAM available on the XCVLX240T device. Even simply storing the four phase-shifted

images I0 − I3 would require 2Mb (≈ 15% of block RAM). Block RAM availability is the

major factor in determining how many Zernike modes may be reconstructed due to the use

of RAM to store the precomputed A† matrices as discussed in Section 5.5.2. Therefore, it is

critical for the design to minimize the memory used for image processing.

To this end, a subsystem was built that utilizes two DPRAM elements to process images

I0−3. One DPRAM processes the even images (I0 and I2) while the other DPRAM processes

the odd. The functioning of the odd and even subsystems is effectively identical so only a

single one is considered in detail. Figure 64 shows a block diagram of the PSI subsystem. The

system is completely pipelined and operates on a pixel-by-pixel basis. On system startup

each memory location in the DPRAM is initialized to zero. Pixel data (8-bit) enters the

circuit on the pixel in line. The pixel in signal is delayed by one clock cycle so that it

matches the doutA signal (due to the one cycle delay of the DPRAM). The stored value on

doutA is then subtracted from the pixel in value which increases the word length to 9 as the

previous unit8 pixel value is now signed. Next, the absolute value of the difference is taken

and the 8 LSBs are sliced off an written into port B (dinB) of the DPRAM. The subtraction,

absolute value, and slicing are pipelined and completed in one clock cycle, so the addr value

sent to addrB is delayed by one clock cycle to keep the data in sync. Lastly, the addrB and

doutB signals are concatenated and sent to the VGA driver circuit for external monitoring

of the image.
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Figure 64: Streaming Image Subtraction.

Figure 65: Pixel Squaring and Binarization.

The MSC enables the appropriate image subtraction subsystem depending on whether

the even or odd images are being captured. When the two pairs of images have been sub-

tracted the resulting pairs of pixels are squared and summed on a pixel by pixel basis

according to Equation 4.3. Though the equation calls for square-rooting the sum, this is
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not necessary, as the pixels are immediately binarized via a comparator. The comparator

threshold is set manually. The value was determined by binarizing several images obtained

from the test CGLRT setup. A best effort was made to minimize noise in the image while

still maintaining as many pixels as possible in the CG spot. This is beneficial for the de-

sign as the square-root function is costly in hardware. Therefore, after the pixels are added

together the sum is sent to a comparator resulting in the Boolean signal bin pixel out.

111



5. FIELD PROGRAMMABLE GATE ARRAYS AND REAL TIME CGLRT

5.4.7 Centroiding

The centroiding subsystem takes a single frame of a CG image and calculates the 2D centroids

x and y where

x =
M10

M00

, (5.1)

and

y =
M01

M00

(5.2)

where

Mij =
∑
x

∑
y

xiyiICG (x, y) . (5.3)

Figure 66 shows the section of the circuit responsible for calculating M00, M01 and M10.

The important components in this circuit are:

• bin pixel out (bool): The nth binary pixel value of a given ICG.

• en (bool): This signal is high every time valid pixel data is available on bin pixel out.

• pixel addr (ufix16): Address of the currently valid pixel. For a 250× 250 image this

value will range from 0 to 62499.

• M00, M01 and M10 (int19): The three image moments used to calculate the centroids

in Equations 5.1 and 5.2.

For each ICG the pixel addr will be 0 at the start of a frame. Two 8-bit counters

counter x and counter y keep track of the current pixel coordinate within the frame and

count from 0-250. counter x is incremented by the en signal each time a valid pixel is

available. Each time counter x completes a line counter y is incremented by comparator

C1. The x and y counter outputs are sent to accumulators A1 and A2 respectively that keep

a running sum of the values. The accumulators are enabled only when bin pixel out = 1.

Accumulator A3 keeps a running sum of all pixels when bin pixel out = 1 and therefore

does not need the enable signal. On the last pixel of the frame (pixel addr = 62499)

comparator C2 is anded with the en signal generating a one clock cycle pulse which, after

a delay, indicates that the frame is complete. This signal is used to reset the counters and

accumulators, preparing them for the next available frame. It also forms the centroid valid

signal which is used to enable the registers shown in Figure 67.
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Figure 66: Circuit responsible for calculating the three moments required for the centroid.

Figure 67: Division portion of the centroid calculation.

Each register is enabled by the centroid valid pulse which loads the data for the three

moments. On the next clock cycle the data is available to the two divider blocks on the

numerator (num) and denominator (den) inputs. The dividers are implemented with the
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Xilinx Divider 3.0 core. It has two outputs which are the quotient (quot) and fractional

(frac) parts. These are then concatenated forming two 36-bit words (fraction part of 16-

bits) which are the x and y centroids (cent x and cent y respectively). The bit-depth of the

fractional and quotient parts are required by the architecture of the Divider 3.0 core and are

later truncated to 12-bits, which is the input requirement for the wavefront recovery circuit.

The centroid valid flag is delayed by 42 clock cycles so that it remains in sync with the

two centroid outputs (the divider core takes 40 cycles to complete the division. 40 cycles

at 50 MHz = 0.8 µ sec which, in terms of system performance, is trivial).

Figure 68: Calculation of the wavefront slope from the centroid.

Lastly, the wavefront slope is calculated by subtracting the centroids from the centre of

the frame (125,125) as shown in Figure 68. A future iteration of the CGLRT instrument may

include the ability for a calibration scan to be stored, where the centroid of each unaberrated

spot location is stored for this subtraction. The final wavefront slopes dx and dy are formed

by 12-bit words 4 of which are the fractional component. After the slopes are calculated

they are sent to the wavefront recovery portion of the circuit, which uses the modal method

to represent the wavefront as a sum of Zernike modes. Section 5.5.1 provides details of this

subsystem.

5.5 Testing

To test the centroiding subsystem three black and white test images were generated in

MATLAB. The centroids were calculated using MATLAB and compared to the centroids

calculated by the centroiding subsystem (specifically signals cent x and cent y). Fig-

ures 69, 70 and 71 show the binary images that were generated in MATLAB. The MATLAB
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calculated centroid is displayed on each image as a red circle. Centroid Test Images 1 and 2

are made up of two spots each. While this situation is not expected to happen in normal

LRT operation it was used to demonstrate that the centroiding subsystem would produce

the correct centroid for complex images. Centroid Test Image 3 is representative of a typical

CG image. Table 3 compares the x and y centroids calculated by MATLAB with those com-

puted by the FPGA centroiding subsystem along with the percent error for each component.

Images 1 and 2 show error of less than 0.2% per component which is due to the limited

numerical precision of the 4-bit fractional component utilised.
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Figure 69: Centroid test image 1.

Figure 70: Centroid Test Image 2. Figure 71: Centroid Test Image 3.
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Image # MATLAB x MATLAB y FPGA x FPGA y % error x % error y

1 199.38 173.03 199.25 173.21 0.07% 0.11%

2 97.48 94.37 97.31 94.24 0.17% 0.14%

3 115.00 115.00 115.00 115.00 0.00% 0.00%

Table 3: Percent error for MATLAB and FPGA calculated image centroid for test images 1-3 in
Figures 69, 70 and 71 respectively.

Next, three raw CG images were captured by the Labview based system (as described

in Chapter 4) and the centroids were once again processed by MATLAB and the FPGA

centroiding subsystem for comparison. Figures 72, 73 and 74 show the raw CG images and

Figures 75, 76 and 77 show the binary images formed after thresholding. The MATLAB

calculated centroid is indicated by the red ring. Table 4 shows the results of the centroid

calculations from MATLAB versus the FPGA centroiding subsystem. The percent error

between the two methods is below 0.35% for both x and y components which represents

less than a single-pixel worth of disagreement. This testing shows that the centroiding

subsystem is able to accurately calculate spot centroids for the CG images formed by the

CGLRT system.
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Figure 72: Raw Coherence Gated Image 1.

Figure 73: Raw Coherence Gated Image 2. Figure 74: Raw Coherence Gated Image 3.
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Figure 75: Binary Coherence Gated Im-
age 1 with Centroid.

Figure 76: Binary Coherence Gated Im-
age 2 with Centroid.

Figure 77: Binary Coherence Gated Im-
age 3 with Centroid.
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Image # MATLAB x MATLAB y FPGA x FPGA y % error x % error y

1 141.90 78.73 141.59 78.48 0.22% 0.32%

2 168.39 119.86 168.25 119.56 0.08% 0.25%

3 171.34 173.44 171.22 173.29 0.07% 0.09%

Table 4: Percent error for FPGA and MATLAB calculated image centroid for binary CG images 1-
3 in Figures 75, 76 and 77.

5.5.1 Wavefront Reconstruction

Real-time estimation of optical wavefronts is critical for the use of adaptive optics (AO) in

diverse fields such as astronomy, microscopy, and biomedical imaging. In the biomedical field,

modalities such as Optical Coherence Tomography (OCT) [20] employ AO in high-speed

depth resolved imaging [38] which requires processing of wavefront aberrations including

the generation of Zernike coefficients. Zernike coefficients are useful not only for wavefront

reconstruction but also for analysis of aberrations in an optical system.

Due to the factorial components in Equation 2.3, direct calculation of the Zernike modes

requires many operations, and is impractical. Even excluding direction calculation, per-

forming the inverse transform of the large matrix of measured data points is expensive and

time-consuming. Processing in real-time requires a method that avoids direct calculation of

these components and, ideally, avoids the calculation of the inverse transform needed to fit

the measured data to the Zernike modes. In this section, a fast parallel method for calcu-

lating Zernike coefficients from measured phase gradients is discussed. Section 5.5.2 reviews

the general modal method for obtaining coefficients via the singular value decomposition

(SVD). Section 5.5.3 presents the parallel method as a restructuring of the general modal

method by separating the large matrix multiplication of the singular value decomposition

into inner products; two for each Zernike mode. In Section 5.5.4 hardware implementation

is presented along with error analysis, timing and resource utilization.

5.5.2 Modal Method

In general, the modal method attempts to reconstruct the wavefront phase W (x, y) at the

sensor plane via a sum of orthogonal functions of the form
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W (x, y) =

j∑
i=1

ci Zi(x, y) (5.4)

where Zi(x, y) is the ith Zernike polynomial and ci is the weighting coefficient. Note i = 0,

the piston term (DC component), is omitted as it cannot be determined from phase derivative

measurements [5]. The most common wavefront sensor, the Shack-Hartmann, typically has

its subapertures arranged in a regularly spaced Cartesian grid. Zernike polynomials are

typically defined in a polar coordinate system. However, they are represented in the Cartesian

system to better match the Shack-Hartmann layout. This method assumes that the measured

phase gradients are available over a circular pupil enclosed within a square grid. All values

outside of that circle are ignored, as shown in Figure 78. For purposes of precalculation,

points are generated over an evenly spaced Cartesian grid of size 250 × 250 pixels and

converted to polar coordinates for calculation of the Zernike modes.

0 n− 1

n− 1

y

x

Figure 78: Circular pupil mapped into a square grid. Grey cells outside the pupil are ignored.

Common wavefront sensing methods, such as the Shack-Hartmann [52], or Laser Ray

Tracing [35], provide measurements of local phase gradients at the sensor pupil, usually by

division of the pupil into n× n sub-apertures. The gradient is related to Equation 5.4 via

Sx =
∂W (x, y)

∂x
=

j∑
i=1

ci
∂Zi(x, y)

∂x

Sy =
∂W (x, y)

∂y
=

j∑
i=1

ci
∂Zi(x, y)

∂y
.

(5.5)
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In matrix form Equation 5.5 may be expressed as

Sxy = Ac (5.6)

where Sxy is a vector of the measured phase gradients with alternating x and y values

Sxy =

[
∂W (x1, y1)

∂x1

∂W (x1, y1)

∂y1
. . .

∂W (xn, yn)

∂xn

∂W (xn, yn)

∂yn

]T
(5.7)

A is a matrix of the partial derivatives of the Zernike modes

A =



∂Z1(x1, y1)

∂x1

∂Z2(x1, y1)

∂x1
. . .

∂Zj(x1, y1)

∂x1

∂Z1(x1, y1)

∂y1

∂Z2(x1, y1)

∂y1
. . .

∂Zj(x1, y1)

∂y1

∂Z1(x2, y2)

∂x2

∂Z2(x2, y2)

∂x2
. . .

∂Zj(x2, y2)

∂x2

∂Z1(x2, y2)

∂y2

∂Z2(x2, y2)

∂y2
. . .

∂Zj(x2, y2)

∂y2

...

∂Z1(xn, yn)

∂xn

∂Z2(xn, yn)

∂xn
. . .

∂Zj(xn, yn)

∂xn

∂Z1(xn, yn)

∂yn

∂Z2(xn, yn)

∂yn
. . .

∂Zj(xn, yn)

∂yn



(5.8)

and c is a column vector of Zernike coefficients

c =

[
c1 c2 c3 . . . cj

]T
. (5.9)

This may be solved for c, in the least-squares sense, by utilizing the pseudoinverse A†

where A† is obtained via the SVD. From the SVD, A = Unn Snn V
T
nn where the columns of
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Unn are the eigenvectors of AAT , the columns of Vnn are orthonormal eigenvectors of AT A,

and Snn is a diagonal matrix, which contains the singular values of A. The pseudoinverse is

then, A† = Unn S
†
nn V

T
nn. Therefore, the Zernike coefficients may be obtained via

c = A† Sxy = Unn S
†
nn V

T
nn Sxy. (5.10)

A parallel method for solving for the ci’s in real-time is presented in the following section.

5.5.3 Parallel Modal Method

The proposed parallel method involves separating the x and y components of Equations 5.7

and 5.8. Two coefficients, cix and ciy, may now be calculated solely from the x and y

components, respectively, as shown in Equation 5.11

cix = A†ix Sx,

ciy = A†iy Sy

(5.11)

where

Sx =

[
∂W (x1, y1)

∂x1

∂W (x2, y2)

∂x2
. . .

∂W (xn, yn)

∂xn

]T
, (5.12)

Sy =

[
∂W (x1, y1)

∂y1

∂W (x2, y2)

∂y2
. . .

∂W (xn, yn)

∂yn

]T
, (5.13)

Aix =

[
∂Zi(x1, y1)

∂x1

∂Zi(x2, y2)

∂x2
. . .

∂Zi(xn, yn)

∂xn

]T
, (5.14)

and

Aiy =

[
∂Zi(x1, y1)

∂y1

∂Zi(x2, y2)

∂y2
. . .

∂Zi(xn, yn)

∂yn

]T
(5.15)
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and A†ix and A†iy are now row vectors taken column-wise from the SVD of
∂Zi(x, y)

∂x
or

∂Zi(x, y)

∂y
, respectively. In this manner, the large matrix multiplication in Equation 5.10

is decomposed into simple inner products, two for each desired mode. Finally, ci can be

obtained by

ci = cix + ciy. (5.16)

Assuming the fixed grid size is known a priori each A†ix and A†iy vector may be precalcu-

lated and stored in memory. Two memory elements are required for each Zernike mode, one

for A†ix and another for A†iy, allowing ∂x and ∂y to be processed independently, in parallel.

The size of each memory element will vary directly with the number of sample points in Sxy

and the word length of each precalculated A†ix and A†iy value. This method trades off long

calculation times inherent in the direct method with larger memory requirements due to the

precalculated vectors.

5.5.4 Hardware Implementation

Hardware implementation was undertaken using a Xilinx Spartan-6 FPGA device utilizing

the Simulink System Generator suite of functions in MATLAB R© [26]. The top level layout

is shown in Figure 79 illustrating the Zernike Coefficient Processing (ZCP) blocks (labelled

X-Tilt, Y-Tilt, Defocus, etc), Address Generator, dx and dy inputs and the ci outputs. Each

block accepts the address input from the Address Generator block. In each ZCP block 2

ROMs store the precalculated A†ix and A†iy values for the given Zernike mode. Figure 80

illustrates internal elements of the ZCP blocks. In each, the addr signal cycles from 0 to

(n2/2)− 1 and then from (n2/2)− 1 back to 0 as each ROM holds half of the symmetric A†ix
and A†iy vectors, respectively (see subsection 5.5.5). For the odd ZCP blocks the select signal

toggles the negated signal through the mux when counting down. Each pair of gradients dx

and dy is sent, in parallel, to each ZCP block. The inner product is formed via a multiply

and accumulate, which is implemented using DSP slices. After the multiply and accumulate

stage the cix and ciy values are summed to produce the final ci. The final ci value is only

valid once the entire n2 input pairs are processed.
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Figure 79: Block diagram for the top level view of Zernike processing blocks.

125



5. FIELD PROGRAMMABLE GATE ARRAYS AND REAL TIME CGLRT
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32

32
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Figure 80: Block diagram for the Zernike Coefficient Processors.

5.5.5 Memory Reduction

Due to the symmetry inherent in the Zernike modes A†ix and A†iy also exhibit even or odd

symmetry about the midpoint of the vector as shown in Figures 81 and 82. This redundancy

enables storage of only half the A†ix and A†iy vectors in memory. One counter is used for

the forward addressing of the inner product multiplications and a second counter is used

for the reverse addressing. A master counter is used as a controller, enabling each counter

as needed. For the A†ix and A†iy’s that exhibit odd symmetry a negation of each element is

performed when the addressing is reversed. By exploiting this symmetry, the size of each

memory element for the A†ix and A†iy’s is halved. This is similar to the techniques used in

direct digital synthesis of symmetric waveforms.

5.5.6 Wavefront Simulation

To test the design a several wavefronts, one of which is shown in Figure 83, were generated

in MATLAB. One arbitrary set of nine Zernike coefficients zin is shown in Table 6. Note

that the piston term is omitted as discussed in Section 5.5.2.
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A†
2x Vector Symmetry

1950 2050 2150

index
40000 2050

Figure 81: Symmetry in the A†2x vector about the midpoint (index = 2048) is apparent. Zoomed
in subimage shows the symmetry is even.
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A†
3x Vector Symmetry

1950 2050 2150

index
40000 2050

Figure 82: Symmetry in the A†3x vector about the midpoint (index = 2048) is apparent. Zoomed
in subimage shows the symmetry is odd.
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Input wavefront Zernike coefficients

X-Tilt Y-Tilt Y-Astig. Defocus X-Astig. Y-Trefoil Y-Coma X-Coma X-Trefoil

-0.6000 0.2000 0.7618 -0.2000 0.3000 0.1200 -0.4500 0.6780 0.9230

Table 5: Arbitrarily chosen Zernike coefficients for the simulated input wavefront.
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Figure 83: Simulated input wavefront

The gradient of the wavefront was calculated, serialized, and sent to Simulink to simulate

outputs from the wavefront sensor. Inputs are converted from double precision format to

fixed point 12 bit signed values with the binary point at 10 bits. The value of 12 bits was

chosen due to our wavefront sensor having this precision, but the model can easily be scaled

to accommodate other values. It is assumed that the inputs have been normalized to a value

between 1 and -1 as the Zernike modes are also normalized between these values. Other

input word lengths were tested and it was found that anything above 10 bits had a constant

error contribution of less than 0.1%.

Zernike coefficients were calculated from the simulated measurements using word lengths

of 18, 20, 22, 24, 26, 28, 30 and 32-bits for the precalculated A†ix and A†iy values respectively.
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cini ci (24-bit) % error ci (32-bit) % error

-0.6000 -0.600558519 -0.09 -0.600044608 -0.01

0.2000 0.199260473 0.37 0.199770331 0.11

0.7618 0.761454582 0.05 0.761984587 -0.02

-0.2000 -0.200686216 -0.34 -0.200161457 -0.08

0.3000 0.299332142 0.22 0.299838722 0.05

0.1200 0.119457960 0.45 0.119983137 0.01

-0.4500 -0.450639725 -0.14 -0.450115860 -0.03

0.6780 0.677210808 0.12 0.677734435 0.04

0.9230 0.922606468 0.04 0.923126817 -0.01

Table 6: Numerical error for calculated Zernike coefficients using 24-bit and 32-bit word lengths.

These were tested to find the smallest word length (less resource utilization) that still gave

acceptable accuracy (<1% error). For each word length the percent error was calculated via:

% error =
|cini − ci|
cini

× 100 (5.17)

and results are shown in Figure 84. It is clear from the figure that word lengths above

22-bits ensure error of less than 1% for each of the 9 modes calculated. The difference in

error between a 24-bit word length and 32-bit word length is small but not negligible and

specific values are shown in Table 6. The RMS error between the reconstructed and input

Zernike mode, for the entire wavefront is 6× 10−4.

5.5.7 Resource Utilization and Performance

Resource utilization was determined for implementation on a Xilinx Spartan-6 XC6SLX45

FPGA and a Xilinx Virtex-6 XCVLX240. For each implementation grid sizes of 8×8, 16×16,

32×32, and 64×64 were considered. This is consistent with current commercial ray-tracing

aberrometers such as the iTrace [57] which deliver a maximum of of 256 (16×16) points. As

the grid size increases, higher order Zernike modes may be more accurately calculated, but

these are often unnecessary for the eye, which tends towards lower order aberrations.

The wavefront reconstruction system was implemented on the Spartan-6 FPGA during its

initial development. This platform was chosen for its relatively low cost and to demonstrate
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Figure 84: Percent error in calculated Zernike coefficients for given word lengths.

that this design can be implemented on a mid-grade FPGA. The final implementation was

synthesised on the Virtex-6 FPGA as a part of the the complete CGLRT system. Table 7

shows the resource utilization for four grid sizes and 24-bit ROM values, while Table 8

shows the 32-bit version. The tables show that block RAM (RAMB8 and RAMB16) usage

is unaffected by word length for grid sizes below 32 × 32. Above that, RAMB16 usage

increases dramatically. A grid size of 128 × 128 was attempted but was too large to fit on

this device due to the system memory required for synthesis. DSP48 (specialized processing

blocks with embedded multipliers) usage is independent of the grid size chosen, but will

become a limiting factor as more Zernike modes are included in the calculation. Tables 7

and 8 also show that, other than a slight increase LUT usage, there is no penalty for utilizing

32-bit ROM values for grid sizes lower than 32× 32. Table 9 shows the resource utilisation
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Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1384 2049 18 0 28 57 0.57

16×16 1386 2060 18 0 28 239 2.39

32×32 1388 2068 0 18 28 984 9.84

64×64 1390 2083 0 54 28 4011 40.11

Table 7: Resource utilization for 24 bit ROM values compiled for a Xilinx Spartan-6 XC6SLX45.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1832 4138 18 0 28 57 0.57

16×16 1834 4144 18 0 28 239 2.39

32×32 1836 4160 0 18 28 984 9.84

64×64 1838 4164 0 72 28 4011 40.11

Table 8: Resource utilization for 32 bit ROM values compiled for a Xilinx Spartan-6 XC6SLX45.

for the Virtex-6 FPGA (only 32-bit values were synthesised).

This method is shown to compare favourably with other methods of wavefront reconstruction.

Rodŕıguez-Ramos, et. al, utilized a forward and inverse 2D-FFT method for grid sizes from 8×8 to

256× 256 [46]. With this method, the Fourier coefficients from the forward 2D-FFT portion of the

recoverer takes approximately 1.67µs compared to 0.57µs by the CGLRT architecture. These results

are comparable due to both methods utilising the modal method of wavefront reconstruction. The

generation of Fourier coefficients in the Rodŕıguez-Ramos method is analagous to the generation of

Zernike coefficients in the method described in this thesis. Once the coefficients have been generated

both utilise a linear fit to reconstruct the measured wavefront.

Saunter, et. al, [50] implemented an FPGA based wavefront reconstruction scheme (architec-

ture details not provided), producing Zernike coefficients, and reporting a frame rate of 1.19µs for

64 Shack-Hartmann spots. The proposed method achieves these results in 0.57µs.

5.6 Conclusion

This chapter began with a brief overview of FPGAs in general, and how they fit into the larger space

of programmable logic devices. The unique workflow for FPGA development was also discussed
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Grid size
Slice

Registers
Slice LUTs RAMB18 RAMB36 DSP48s

Clock

Cycles

Duration

(µs @ 200MHz)

8×8 1656 (1%) 2557 (9%) 18 (2%) 0 28 (4%) 57 0.285

16×16 1660 (1%) 2561 (9%) 18 (2%) 0 28 (4%) 239 1.195

32×32 1664 (1%) 2566 (9%) 18 (2%) 0 28 (4%) 984 4.92

64×64 1668 (1%) 2572 (9%) 0 36 (9%) 28 (4%) 4011 20.06

Table 9: Resource utilisation for 32 bit ROM values compiled for a Xilinx Virtex-6 XC6VLX240T-
1FFG1156.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1141 XX XX 4 6 162 1.62

16×16 1667 XX XX 4 6 412 4.12

32×32 2855 XX XX 4 15 1304 13.04

64×64 4613 XX XX 16 15 4516 45.16

128×128 8135 XX XX 64 25 17084 170.84

Table 10: Resource utilisation for 2D-FFT phase recovery circuit, 8 bit inputs, compiled for
a Xilinx Virtex-4 XC4VSX35. Taken from [46]. “XX” indicates that slice LUTs and RAMB8
utilisation was not reported.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1650 XX XX 4 10 162 1.62

16×16 2302 XX XX 4 10 412 4.12

32×32 3992 XX XX 8 22 1304 13.04

64×64 6472 XX XX 24 22 4516 45.16

128×128 11326 XX XX 24 36 17084 170.84

Table 11: Resource utilisation for 2D-FFT phase recovery circuit, 16 bit inputs, compiled for
a Xilinx Virtex-4 XC4VSX35. Taken from [46]. “XX” indicates that slice LUTs and RAMB8
utilisation was not reported.
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with an emphasis on the unique ability of the MATLAB based System Generator environment

to simplify the design process. Next, an overview of the CGLRT FPGA system architecture was

provided, followed by an in-depth discussion of the various subsystems. Special attention is paid

to the novel parallel wavefront recovery subsystem used to generate Zernike coefficients from the

measured wavefront slopes. Coefficients were fit to the phase gradients, in the least-squares sense,

via a precomputed singular value decomposition. Symmetries in the precomputed vectors were

exploited to halve the required memory. With this FPGA architecture in hand, the discussion may

now continue to the final development of the CGLRT instrument.
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6 The CGLRT Instrument

Chapter 4 presents the results of the non-real-time, Labview based LRT and CGLRT implemen-

tations. While these implementations were successful in demonstrating the ability of CGLRT to

perform depth-resolved wavefront sensing it is important to combine the optical WFS system with

the real-time processing FPGA architecture discussed in Chapter 5. With the addition of the

FPGA based processing the CGLRT instrument may be realised in form which enables all of the

data acquisition, system control, image processing, and wavefront reconstruction on the embedded

system. The end goal of the CGLRT instrument is to be able to integrate into a high-speed OCT

type imaging system, and the FPGA computing hardware provides the speed and resources that

such an integration would require. This also opens up the possibility of combining the CGLRT and

OCT processing systems on the same FPGA, given sufficient resources on the chip.

A photograph of the CGLRT optical setup is shown in Figure 85. This is functionally identical

to the layout in Figure 43 (the placement of the camera has shifted, but this has no effect). Each

component of the setup is discussed in detail in the following sections, so here a brief summary

will suffice. Starting at the right, the optical source OS (675 nm SLD, including a collimating lens)

sends a beam with an approximate diameter of 5 mm to the beam splitter BS1. Here the beam is

split into the reference arm (blue) and the object arm (red) of the interferometer. The reference

arm is directed to mirror M1 which sends the beam to the PZT mounted reference mirror RM.

After reflecting off of RM the beam retraces its path to M1 and passes through BS1. At BS3 the

reference arm recombines with the object arm and is incident upon the camera. In the object arm,

after passing through BS1, the beam diameter is reduced to approximately 500 µm by lenses L1 and

L2. The beam is then focused onto the galvo-scanning mirrors GM by lens L3. After traversing the

GM lens L4 collimates the beam and sends it to beam splitter BS2. Here the beam interrogated

the multi-layer object MLO which consists of lens L5, two microscope slides, and a mirror. After

returning from the MLO the beam is deflected by BS2 to lenses L6 and L7 which form an image

of the reflected spot in the pupil plane of L5. Lens L8 focuses the scanning beam, through beam

splitter BS3, onto the detector of the camera. If the optical path lengths of the reference and object

arms are matched, interference will occur between the two beams.
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Figure 85: Photograph of the CGLRT optical layout. OS, optical source including a collimat-
ing lens; BS1, BS2, BS3, plate beam splitters; L1-L8, achromatic doublets; GM, galvo-scanning
mirror; RM, reference mirror; MLO, multi-layer object composed of object mirror OM and 2 glass
microscope slides; M1, mirror; CAMERA, CCD camera.

The FPGA system is based around the Xilinx ML605 development board, shown in Figure 86.

The centre-piece of the board is the Virtex-6 FPGA but the board contains many other integrated

peripherals including programmable DIP switches, and LCD display, 512 MB of DDR3 onboard

RAM, ethernet, USB-JTAG, VGA, and 2 FMC expansion slots for connection Mezzanine cards.

The FPGA is programmed directly from Xilinx’s ISE software on the PC via the USB-JTAG

connection. A photograph of the ML605 board, take from [64] is shown in Figure 87.
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Figure 86: ML605 based FPGA system.

As the image shows, there are many components on the ML605 board, so only those that are

applicable to the CGLRT instrument will be discussed here. Item 1) is the Xilinx Vertex-6 FPGA,

model: XC6VLX240T-1FFG1156. The FPGA itself is not visible in the image as it is obscured

by the cooling fan. Item 6) is the JTAG connector (mini-USB), used to download FPGA program

file from the PC. Item 7a), on the back-side of the board, is the 200 MHz oscillator used as the

main system clock. Item 14) is the video DVI connector. This was utilised in the experimental

setup to drive a standard VGA monitor to view the output of the camera. The video interface

is supported by a Chrontel CH7301C-TF video codec which interfaces to the FPGA. While many

advanced features are available on the Chrontel chip, for this implementation, a simple VGA driver

was implemented on the FPGA, which was sufficient. Items 19) and 20) are the two FMC (FPGA

mezzanine card) connectors. FMC is an ANSI standard, developed by FPGA manufacturers [69]

which allows for connecting a variety of peripherals to the main board. In this setup, FMC connector

20) was used to interface with the Cameralink peripheral that connects to the high-speed camera.

FMC connector 19) was used to interface to a Xilinx’s FMC-CE I/O board.
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Figure 87: ML605 board. Image taken from [64]

An image of the FMC-CE board, taken from [68], is shown in Figure 88. As shown, the board is

equipped with 4 SMA connectors, 5 push-buttons, an LCD display, a rotary knob, 8 slide-switches

and associated LEDs, 2x12-pin PMOD connectors and 1x6 pin PMOD connector. For the CGLRT

instrument, the central push-button was used to initiate a scan.

138



6. THE CGLRT INSTRUMENT

Figure 88: A Xilinx FMC-CE expansion board taken from [68].

The PMOD is an interface specification from Digilent used to connect low-frequency, low-

power peripherals. For the CGLRT instrument two PMOD interfaces were used to connect three

DACs to the ML605 host board. The three DACs are contained on two PmodDA2 boards from

Digilent. Each PmodDA2 board contains two 12-bit digital-to-analog converters (Texas Instruments

DAC121S101). These communicate with the FPGA using serial peripheral interface bus (SPI).
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Figure 89: The Multi-layer Object (MLO)composed of lens L5 (f = 35 mm), two microscope
slides and object mirror OM.

Figure 89 shows a photograph of the multi-layer object (MLO) as installed in the CGLRT

instrument. Lens L5 (f=35 mm) imitates the lens of the eye. Two microscope slides form four

minimally reflective surfaces while mirror OM form a fifth highly reflective surface.
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Figure 90: Close-up of the galvo-scanning mirror GM. Approximate separation between the x
and y scanning mirrors is 10 mm.

The galvanometer scanning-mirror GM is shown in Figure 90. The GM consists of a Cambridge

Technology MicroMaxTM 673 Series x-y scanning mirror and associated driver electronics. Each

scanning mirror has a position output scale factor of 1V/ deg and a maximum frequency of 500 Hz.

The mirror motor housing was secured to the optical bench via Thorlabs a beam-splitter mount.

This provided a suitable adjustable mount for the mirrors while also being stable.
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Figure 91: PZT mounted reference mirror RM.

The piezo mounted reference mirror RM is shown in Figure 91. The mirror is bonded directly

to the PZT stack (silver disk). The PZT element is a Physik Instrumente (PI) P-286.40 which has

a translation distance of 100 µm with a control voltage range of 0 to −1000 V. Obviously, this is

much too large a voltage to be provided by low-voltage electronics so an amplifier is utilised. PI

amplifier E-463 HVPZT-Amplifier is shown in Figure 92. This is a three-channel amplifier, only

one channel of which was needed. It provides a manually adjustable DC-offset knob along with a

control input voltage BNC connector. Control voltages were provided to the PZT amplifier by the

DAC outputs of the FPGA board as shown in Figure 93.
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Figure 92: PI E-463 high-voltage PZT amplifier.

Figure 93: PZT control signal block diagram. The ML605 FPGA board sends SPI control signals
to the DAC board, which is connected to the ML605 via mezzanine and PMOD interfaces. The
low voltage DAC output is amplified by the PI E463 high-voltage amplifier and sent to the PZT.

6.1 LRT vs. CGLRT Results

On a base level it is critical to show that CGLRT and standard LRT agree when measuring the

same wavefront. Chapter 4 shows LRT and CGLRT performing wavefront measurements (not in
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real-time) for differing setups. So a first step in validating the FPGA based CGLRT instrument

was to compare the results of LRT versus CGLRT for the same, single-layer target. To this end

the setup in Figure 85 was modified slightly by removing the two microscope slides from the MLO,

thus creating a single-layer target, consisting only of the strongly reflecting object mirror OM.

The operation of the instrument was limited to that of a standard LRT by blocking the reference

beam of the interferometer between BS1 and M1. In this way only the scanning beam was present

to perform the measurement. The FPGA processor was set to only include the first of the four PSI

images, setting the remaining three images to zero. This allows the rest of the FPGA architecture to

be untouched. By unblocking the reference beam the instrument is returned to CG mode. Blocking

the reference beam does not affect the intensity of the scanning beam so the binarization threshold

can remain unchanged.

To begin with, the noise floor of the system was tested by disabling galvo-scanner GM and

taking 10 stationary scans. In this way the beam was not articulated and the results will only

be due to the inherent noise in the system including vibrations, air currents, detector noise, etc.

Stationary scans were taken in standard LRT mode and CGLRT mode. Zernike modes were

calculated in real-time by the FPGA architecture. Figure 94 shows the noise floor results. The

blue triangles indicate the Zernike coefficients calculated for standard LRT (no CG). Error bars

indicate the standard deviation of each Zernike mode. The red circles indicate the CGLRT results.

As expected the CGLRT data is somewhat noisier due to using the fringes to calculate the spot

position but the error is still well within acceptable limits (< 0.02µm for most modes). The total

RMS error for all nine Zernike modes in LRT mode was 0.0017 microns while the total RMS error

in CGLRT mode was 0.0074 microns. Fringe noise is most likely induced by air currents which

produce random fluctuations over the time that the four fringe images are acquired. These were

minimized by building a rudimentary enclosure around the optical setup.
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Figure 94: Noise floor results comparing LRT and CGLRT. Blue triangles indicate standard LRT
while red circles indicate CGLRT. CGLRT results are noisier due to calculating the spot location
via modulated fringes.

Next, single scans are performed in both LRT and CGLRT modes with the galvo-scanner GM

re-enabled and a single-layer target. As noted above, the reference beam is blocked for LRT mode

and the full interferometer is utilised in CGLRT mode. An 8 × 8 scan is performed in each case.

Figure 95 shows the results. As before, the blue triangles denote the standard LRT results while

the red circles denote the CGLRT results. The reported Zernike modes between the two methods

agree to less than one micron, confirming that CGLRT agrees with standard LRT. Lastly, Figure 96

shows the difference in each Zernike mode between CGLRT and LRT. The largest difference in a

single mode is approximately −0.022 µm.
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Figure 95: Comparison of standard LRT vs. CGLRT for a single layer target. Zernike modes
from standard LRT are indicated by the blue triangles whereas Zernike modes from CGLRT are
indicated by red circles.
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Figure 96: Difference in Zernike modes reported by standard LRT vs. CGLRT for a single layer
target.
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6.2 CGLRT Results

After it was shown that the CGLRT instrument agrees with standard LRT for a single-layer target,

it remains to show the ability of the instrument to perform wavefront sensing for a multi-layer

object utilising the FPGA platform. To this end, the microscope slides as shown in Figure 89 were

reinserted into the MLO. Five separate measurements were performed, each with a grid size of

8× 8, one for each surface in the MLO. Each step of a measurement was performed as follows:

1. The focal point of the interrogating beam is adjusted to be between surfaces P5 and P4 (see

Figure 44). This focus is held for all measurements.

2. The pathlength of the linear translation stage (LTS) was adjusted to obtain interference

fringes for a single surface in the MLO.

3. An x, y scan is initiated by manually depressing a button on the FPGA board.

4. After the scan is performed the resulting Zernike coefficients are noted. The pathlength is

then adjusted again to match the optical path length (OPL) for the next surface.

In this manner all five surfaces of the MLO are interrogated. All of the measurements are

performed in the presence of the bright primary reflection from the object mirror (OM).

Figure 97 shows a screen shot of the spot images on the surface of the camera. The screen

shots were obtained by photographing the display monitor as the FPGA does not provide a direct

method for saving the output images. The bright primary reflection from P5 is clearly evident in

the centre of the image. The spots from P3 and P4 can be seen, superimposed upon one another to

the left of the P5 spot, whereas the P1 and P2 spots can be seen to the right. The spots from each

microscope slide are overlapping because the slides are so thin that the deviation is small when the

beam is interrogating the MLO paraxially.

Figure 98 shows a screen shot with the interrogating beam entering the MLO off-centre. In this

manner the deviation between the returned beams is greater and the individual reflections from

each surface are visible.

Figures 97 through 103 were obtained by photographing the VGA monitor used to view the

output of the camera sensor. This was necessary as the FGPA architecture does not have a way to

directly access the images as they are processed. Also, the small red square shown in Figures 100

through 103 is an artifact of the VGA driver circuit used to show the centroid of the current image.

This is only valid for non-CG images as the CG-images have all of the stray light included in the

image. This was used for validation purposes only and may be ignored.
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P3 & P4 P1 & P2

P5

Figure 97: Screen shot of reflections from the MLO. The strong reflection from object surface P5
(object mirror) is evident in the centre of the image. Reflections from surfaces P1 and P2 (front and
back of the front microscope slide) and surfaces P3 and P4 (front and back of the rear microscope
slide) are superimposed upon one another to the left and right of the main reflection.
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P1

P5

P2

P3

P4

Figure 98: Screen shot similar to Figure 97, but here the interrogating beam is coming in at an
angle to show the various reflections. Reflections from the front and back of each microscope slide
are now evident.

Figures 99, 100, 101, 102, 103 are screen shots of the spot images for surfaces P5 through P1

with interference fringes visible. Note that in Figure 99 the intensity of the interrogating beam was

reduced in order to make the fringes easily visible. In practice this is not required. Due to the less

intense beam the side reflections from P4 through P1 are too dim to be seen.
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Figure 99: Interference fringes from surface
P5. The intensity of the beam is attenuated
so as not to saturate the detector. Spots P1 -
P4 are too dim to be visible.

Figure 100: Interference fringes from sur-
face P4.

Figure 101: Interference fringes from sur-
face P3.
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Figure 102: Interference fringes from sur-
face P2.

Figure 103: Interference fringes from sur-
face P1.

Figure 104 shows the combined results from scanning each of the five surfaces of the MLO

as Zernike coefficients. As expected the x-tilt is very small (due to imperfect alignment in the

x-direction). The y-tilt values are positive for surfaces P2 and P2 and negative for P3 and P4, also

as expected. The defocus is largest for surface P1 and approaches zero as the interface between

P4 and P5 is reached, and flip sign from negative to positive for P5. This is also expected as

the focal point of the interrogating beam was set between surfaces P4 and P5. Magnitudes of the

remaining Zernike modes were negligible. These results demonstrate the ability of the CGLRT

instrument to perform depth resolved wavefront sensing for a MLO all on a high-speed FPGA

based embedded-systems platform.
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Figure 104: Magnitude of Zernike coefficients for wavefront returned from each surface of the
MLO. As expected surfaces P1 and P2 have opposing y-tilt values from surfaces P3 and P4. Also,
the defocus approaches zero as the interface between surface P4 and P5 is reached.

6.3 Timing and Resource Utilisation

Table 12 presents a summary of the device utilisation for the complete CGLRT system FPGA

architecture. Results are given for four grid sizes (8×8, 16×16, 32×32, 64×64) all with wavefront

reconstruction consisting of 9 Zernike modes. The last column shows the resource utilisation for

the maximum Zernike modes that can be included in the architecture for the largest grid size

(121 Zernike modes). In practice, there would be little use in calculating this many modes but it

demonstrates the maximum capability of the system architecture. It is notable that the architecture

is very efficient in terms of resource utilisation including for the largest implementation (64 × 64

grid and 121 Zernike modes). Even this implementation only nears maxing out the memory (block

RAM at 84%) while the remaining resources have plenty of headroom.
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8× 8 16× 16 32× 32 64× 64 64× 64

Number of Zernike modes 9 9 9 9 121

Number of Slice Registers 2% 2% 2% 2% 4%

Number of Slice LUTs 4% 4% 4% 5% 18%

Number used as logic 3% 3% 4% 4% 17%

Number used as memory 1% 1% 1% 1% 1%

Number of occupied Slices 7% 7% 8% 7% 22%

Number with an unused LUT 33% 34% 36% 40% 55%

Number of fully used LUT-FF pairs 38% 35% 33% 48% 38%

Number of RAMB36E1/FIFO36E1s 11% 11% 11% 20% 84%

Number of DSP48E1s 3% 3% 3% 3% 29%

Table 12: CGLRT FPGA architecture resource utilisation for various scan sizes. The last column
represents the most resource intensive version with a 64× 64 grid and 121 Zernike modes.

Table 13 shows scan timing for the various grid sizes. The first row is for a 64 point grid (8×8)

up to the last row which is 4096 points (64× 64). The total time spent grabbing frames from the

camera, in seconds, is shown in the first column. This varies from 2.59 seconds for the smallest grid

size to almost 166 seconds for the largest grid size. The frame-grabbing was, by far, the largest

contribution to scan time in the system. This will be discussed more below. The next column shows

the contribution, in seconds, from the galvonometer scanning mirror. This delay is the total time

required by the scanning mirrors to pivot and settle for each scan point. A single pivot and settle

operation has a delay of approximately 3 ms which was determined experimentally and hard coded

into the FPGA architecture. The PZT delay is the total time that the PZT spends modulating the

OPL of the reference arm. This is also hard coded into the FPGA architecture with a single PZT

move taking approximately 200 ns. The total scan time, in seconds, was measured experimentally

by utilising a counter in the FPGA. The counter was started when the scan was initiated (by

depressing a button on the FPGA board) and finished when the Zernike mode calculations were

completed. The total measured time for each scan was approximately 13% larger than is expected

by summing all of these contributions. It is expected that various sources, such as values being

written to the DACs and delays in the analogue electronics are contributing factors. With the

overwhelming delay being due to the frame grabbing it was not deemed critical to investigate these
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other sources. Finally, the percentage of the total scan time due to frame grabbing is reported in

the second-to-last column.

Grid

points

Total Time

Frame

Grabbing (sec)

Galvo

delay (sec)

PZT

Delay (µs)

Total scan

time (sec)

Frame grab

delay

Other Delay

64 2.59 0.192 51.2 3.188 81.3% 12%

256 10.37 0.768 204.8 12.92 80.3% 13%

1024 41.49 3.072 819.2 51.8 80.1% 14%

4096 165.97 12.29 3276.8 207.4 80.0% 14%

Table 13: Timing of the CGLRT instrument.

It is evident that approximately 80% of the time delay in the entire CGLRT instrument is

due to the slow camera (96fps). Unfortunately, this was the only camera available at the time of

this project but a faster camera would greatly reduce the total scan time. For example, another

experimental setup in the department utilised a Mikroton EoSens CL high-speed camera. This

camera is able to capture the same 250 × 250 pixel image with a frame rate of approximately

6000fps. Table 14 shows the expected timing of the CGLRT instrument if this high-speed camera

were utilised.

Grid

points

Total Time

Frame

Grabbing (ms)

Galvo

delay (sec)

PZT

Delay (µs)

Total expected

scan time (sec)

Frame grab

delay

64 43 0.192 51.2 0.235 1.3%

256 171 0.768 204.8 0.939 1.3%

1024 683 3.072 819.2 3.76 1.3%

4096 2731 12.29 3276.8 15.02 1.3%

Table 14: Expected timing of the CGLRT instrument utilising a high-speed (6000fps) camera.
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This would represent a massive decrease in scan time with the total time spent frame grabbing,

for an 8×8 scan reduced from 3.188 seconds to 40 ms. The percentage of the total scan time spend

frame-grabbing drops from 81.3% to 1.3%. The table shows that the 64 point and 256 point scans

could both be performed in under 1 s. The 4096 point scan is still somewhat impractical at 15.02 s.

6.4 Conclusion

In summary, this chapter has presented the details of the CGLRT instrument’s experimental setup,

including the main optical and electrical systems. The optical system takes the form of a Mach-

Zehnder interferometer, where the reference arm path-length is modulated by the PZT mounted

reference mirror. The object arm of the interferometer is composed of the scanning beam, articu-

lated by the galvo-scanning mirror. This interrogates the multi-layer object (MLO), composed of

two weakly reflecting microscope slides and a strongly reflecting mirror. By employing coherence-

gating the instrument is able to perform depth-resolved wavefront sensing, differentiating between

the five wavefronts returned from the MLO. The instrument is able to do this in the presence of

the strong reflection from the MLO mirror.

The FPGA based embedded system provides the command and control functions for the instru-

ment, including image post-processing and wavefront reconstruction. Based on the Xilinx ML605

board, and utilising the Virtex-6 FPGA, the system is an elegant self-contained unit which is able

to:

1. provide control signals to the galvo-scanning mirror via the PMOD connected DAC,

2. provide a control voltage to the PZT via the PMOD connected DAC,

3. read data from the camera via the FMC connected Cameralink card,

4. display the output of the camera via a VGA monitor,

5. perform image processing including image subtraction, binarization and centroiding and

6. perform wavefront reconstruction and deliver the results as Zernike coefficients.

The limiting factor in the speed of the system was the frame-rate of the available camera.

Section 6.3 shows that the use of a high frame-rate camera would decrease the acquisition time by

92% for an 8× 8 scan.

The instrument described in this chapter is the culmination of over three years of intense

research and engineering. It is hoped that the cross-disciplinary effort of developing a combined

optical and FPGA based system yielded an instrument that is more capable than either would
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have produced alone. This novel CGLRT instrument is able to perform, for the first time with

this modality, depth-resolved wavefront sensing, and to do so in real-time. Up until this point

depth-resolved wavefront sensing (based on a SHS) has relied on image storage and PC based post-

processing that is done off-line. Using an embedded systems based approach all of these functions

are able to be completed in real-time, all within the FPGA.
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7 Conclusion

The FPGA architecture for wavefront reconstruction detailed in Chapter 5 was published in an arti-

cle entitled ”An FPGA Architecture for Extracting Real-Time Zernike Coefficients from Measured

Phase Gradients” [34].

The CGLRT acted as a suitable, though perhaps not ideal, testbed for the development of the

FPGA based system, due to the inherent speed limitations of the serial, scanning based system. If

the foundation laid for the embedded system were given minor alterations, it would applicable not

only to CGLRT but CGSHS as well. As designed, the embedded system described in this research

utilises that same Cameralink interface, DAC controllers, VGA controller, image-processing and

wavefront reconstruction subsystems that a CGSHS system would require. If the system were to

be modified for operation with a CGSHS system it would need to:

1. remove the portions of the circuit responsible for control of the galvo-scanning mirror, as this

is no longer required,

2. implement a subsystem to handle segmentation of the Shack-Hartmann image and

3. rework the centroiding subsystem to calculate the centroid of each image segment in parallel.

An implementation of this sort would do away with most of the time associated with frame-

grabbing, while also removing the need for galvo-scanning. For example, Table 15 compares the

time required for a 64 point scan (using the 6000 fps camera) in the CGLRT with a similar setup

for a theoretical CGSHS instrument.

Modality

Total Time

Frame

Grabbing (ms)

Galvo

delay (sec)

PZT

Delay (µs)

Wavefront

Recon.

Delay (µs)

Total expected

scan time (ms)

CGLRT 43 0.192 51.2 0.285 235

CGSHS 0.67 0 0.80 0.285 1.47

Table 15: Timing comparison of the CGLRT instrument to a theoretical CGSHS.

This comparison assumes that a single CGSHS scan is completed using four-frames and that

the delay due to PZT scanning (to acquire four CG images) is comparable to that of CGLRT. It

also assumes the use of the same FPGA based architecture for reconstructing the wavefront. This is
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not a completely fair comparison, as the CGSHS architecture would need to account for segmenting

tasks, but this may be able to be offset by increased parallelisation in the Zernike mode calculation

circuit. As a rough comparison though, a CGSHS system may realise an increase in sensing time of

up to 158 times over the CGLRT. This strengthens the case for extending the FPGA architecture

in this research to the CGSHS modality.

It is also useful to note at what point the FPGA architecture will become a limiting factor

for the performance of the theoretical CGSHS system. As in the case of the CGLRT, the time

required to grab frames from the camera is the driving factor. Assuming a frame-rate of 6000 fps,

the time to grab a single frame (167 µs) is 575 times greater than the time required to perform

a full wavefront recovery. Even for the largest grid size (4096 points), the FPGA architecture, at

20.06 µs would require an increase of almost 10x in the frame rate of the camera to begin being

a limiting factor. The Mikrotron camera referenced earlier, used in the current CGSHS setup, is

able to run up to 33,390 fps but only as a reduced image size of 60 by 60 pixels. This shows the

the FPGA architecture, as designed, leaves ample headroom for the remaining system components

to be improved before it becomes a limiting factor.

7.1 Future Work

While the research presented here has demonstrated the ability for LRT to perform high-speed depth

resolved wavefront sensing further work may be done to bring the system closer to a fully-functional

adaptive optics (AO) system. As it stands, the current system fulfills the wavefront sensing portion

of an AO system as shown in Figure 6. It still remains to incorporate this wavefront sensor into a

fully-functional adaptive optics system.

A natural next step would be to expand the system to include a deformable-mirror (DM)

and ’close the loop.’ The FPGA based system, as presented, has ample resources (see 12) to

implement a closed loop system for control of the DM. In this manner, depth-resolved wavefronts

could not only be measured but also corrected. It may be interesting to investigate a zonal wavefront

recovery method in this case. In this way, as each point in the LRT scan pattern is measured, the

corresponding segments of the DM could be updated. This would allow the wavefront correction

to be continuously updated without having to wait for a total scan to be completed.

Another next-step in this research would be to perform CGLRT for back-scattering targets

such as biological tissue. This would be a much greater challenge due to the small amount of light

typically returned from within the focal-plane of the object being imaged. This step would pave

the wave for CGLRT to be integrated into an existing ocular imaging system, such as OCT, to

perform wavefront correction.
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Outside of realising a full-fledged AO system, it would also be of interest to compare CGLRT to

coherence-gated Shack-Hartmann (CGSHS) and show that the systems provide consistent results.

In a similar fashion to the Navarro paper [35], a dual system which compared the output a CGLRT

and CGSHS for a single, multi-layer target would be useful in demonstrating the self-consistency

of the techniques.

7.2 Closing Comments

This dissertation has described the development of a coherence-gated laser ray tracing wavefront

sensor with the ability to perform depth-resolved wavefront sensing. This cross-disciplinary project,

taking an instrumentation approach, has also developed a highly-specialised, FPGA based embed-

ded system on which the instrument rests. The motivation to perform this research stemmed

from patent US 8451452 B2 entitled ”Method for depth resolved wavefront sensing, depth resolved

wavefront sensors and method and apparatus for optical imaging” [39]. This patent described the

theoretical operational principles of depth-resolved versions of both the Shack-Hartmann and laser

ray tracing type wavefront sensors. The Shack-Hartmann versions were built and described in the

papers “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront

sensor” [59] and “Demonstration of real-time depth-resolved Shack–Hartmann measurement” [61].

The research described in this dissertation has filled in the laser ray tracing gap by demonstrating

not only a PC based depth-resolved LRT, but going one step further, a high-speed FPGA based

depth-resolved LRT.
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